Skip to main content

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease of unknown cause representing the most common form of idiopathic interstitial pneumonias. It is believed that the development of IPF is influenced by both genetic and environmental factors. The pathogenesis of IPF is complex, and many contributing factors to fibrogenesis are known to date. In recent years there have been important advances in the understanding of the pathogenesis of IPF. A large number of experimental studies have highlighted the importance of epithelial cell injury, fibroblast differentiation and myofibroblast activation, the involvement of inflammatory and progenitor cells, and the effect of genetic and epigenetic factors. IPF is characterized by progressive fibroblast proliferation and differentiation followed by excessive deposition of extracellular matrix (ECM). This results in the damage to the structure of the lung, which eventually causes dyspnea and respiratory failure in patients with IPF. This fibrotic ECM microenvironment is characterized by altered biochemical and biomechanical properties and stores abundant amounts of growth factors, all of which can affect the behavior of structural lung cells and also inflammatory cells. This chapter summarizes the newest insights into the pathogenesis of IPF and tries to describe how this knowledge helps to find new therapies for the patients who are suffering from this devastating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya PS, Zukas A, Chandan V et al (2006) Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol 37(3):352–360

    Article  CAS  PubMed  Google Scholar 

  • Alder JK, Chen JJ, Lancaster L et al (2008) Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci USA 105(35):13051–13056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson CK, Andersson-Sjoland A, Mori M et al (2011) Activated MCTC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis. Respir Res 12:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annes JP, Chen Y, Munger JS et al (2004) Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol 165(5):723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyagi-Ikeda K, Maeno T, Matsui H et al (2011) Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-{beta}-Smad3 pathway. Am J Respir Cell Mol Biol 45(1):136–144

    CAS  PubMed  Google Scholar 

  • Araya J, Kojima J, Takasaka N et al (2013) Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 304(1):L56–L69

    Article  CAS  PubMed  Google Scholar 

  • Armanios MY, Chen JJ, Cogan JD et al (2007) Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 356(13):1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Atabai K, Jame S, Azhar N et al (2009) Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J Clin Invest 119(12):3713–3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baroke E, Gauldie J, Kolb M (2013) New treatment and markers of prognosis for idiopathic pulmonary fibrosis: lessons learned from translational research. Expert Rev Respir Med 7(5):465–478

    Article  CAS  PubMed  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS et al (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601

    Article  PubMed  Google Scholar 

  • Barry-Hamilton V, Spangler R, Marshall D et al (2010) Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16(9):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner KB, Samet JM, Stidley CA et al (1997) Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 155(1):242–248

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner KB, Samet JM, Coultas DB et al (2000) Occupational and environmental risk factors for idiopathic pulmonary fibrosis: a multicenter case–control study. Collaborating Centers. Am J Epidemiol 152(4):307–315

    Article  CAS  PubMed  Google Scholar 

  • Beers MF, Morrisey EE (2011) The three R’s of lung health and disease: repair, remodeling, and regeneration. J Clin Invest 121(6):2065–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bei Y, Hua-Huy T, Duong-Quy S et al (2013) Long-term treatment with fasudil improves bleomycin-induced pulmonary fibrosis and pulmonary hypertension via inhibition of Smad2/3 phosphorylation. Pulm Pharmacol Ther 26(6):635–643

    Article  CAS  PubMed  Google Scholar 

  • Bellaye PS, Kolb M (2015) Why do patients get idiopathic pulmonary fibrosis? Current concepts in the pathogenesis of pulmonary fibrosis. BMC Med 13:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Bensadoun ES, Burke AK, Hogg JC et al (1996) Proteoglycan deposition in pulmonary fibrosis. Am J Respir Crit Care Med 154(6 Pt 1):1819–1828

    Article  CAS  PubMed  Google Scholar 

  • Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-β signaling in fibrosis. Growth Factors 29(5):196–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonniaud P, Martin G, Margetts PJ et al (2004) Connective tissue growth factor is crucial to inducing a profibrotic environment in “fibrosis-resistant” BALB/c mouse lungs. Am J Respir Cell Mol Biol 31(5):510–516

    Article  CAS  PubMed  Google Scholar 

  • Boorsma CE, Draijer C, Melgert BN (2013) Macrophage heterogeneity in respiratory diseases. Mediators Inflamm 2013:769214

    Article  PubMed  PubMed Central  Google Scholar 

  • Booth AJ, Hadley R, Cornett AM et al (2012) Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med 186(9):866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boveda-Ruiz D, D’Alessandro-Gabazza CN, Toda M et al (2013) Differential role of regulatory T cells in early and late stages of pulmonary fibrosis. Immunobiology 218(2):245–254

    Article  CAS  PubMed  Google Scholar 

  • Brody AR (1993) Asbestos-induced lung disease. Environ Health Perspect 100:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Fiore VF, Sulchek TA et al (2013) Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions. J Pathol 229(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Bucala R, Spiegel LA, Chesney J et al (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1(1):71–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno M, Lai YC, Romero Y et al (2015) PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest 125(2):521–538

    Article  PubMed  Google Scholar 

  • Byron A, Humphries JD, Humphries MJ (2013) Defining the extracellular matrix using proteomics. Int J Exp Pathol 94:75–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadigan KM, Liu YI (2006) Wnt signaling: complexity at the surface. J Cell Sci 119(Pt 3):395–402

    Article  CAS  PubMed  Google Scholar 

  • Cawston TE, Young DA (2010) Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res 339(1):221–235

    Article  CAS  PubMed  Google Scholar 

  • Chen QK, Lee K, Radisky DC et al (2013) Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells. Differentiation 86(3):126–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Liu Q, Zhang R et al (2014) Lysyl oxidase promotes bleomycin-induced lung fibrosis. J Mol Cell Biol 6(6):506–515

    Article  PubMed  Google Scholar 

  • Chien JW, Richards TJ, Gibson KF et al (2014) Serum lysyl oxidase-like 2 levels and idiopathic pulmonary fibrosis disease progression. Eur Respir J 43:1430–1438

    Article  CAS  PubMed  Google Scholar 

  • Cho MH, Boutaoui N, Klanderman BJ et al (2010) Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet 42(3):200–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung JM, Jung MJ, Lee SJ et al (2012) Effects of prolyl 4-hydroxylase inhibitor on bladder function, bladder hypertrophy and collagen subtypes in a rat model with partial bladder outlet obstruction. Urology 80(6):1390.e7–1390.e12

    Article  Google Scholar 

  • Cojocaru M, Cojocaru IM, Silosi I et al (2011) Pulmonary manifestations of systemic autoimmune diseases. Maedica (Buchar) 6(3):224–229

    Google Scholar 

  • Coon DR, Roberts DJ, Loscertales M et al (2006) Differential epithelial expression of SHH and FOXF1 in usual and nonspecific interstitial pneumonia. Exp Mol Pathol 80(2):119–123

    Article  CAS  PubMed  Google Scholar 

  • Corsini E, Luster MI, Mahler J et al (1994) A protective role for T lymphocytes in asbestos-induced pulmonary inflammation and collagen deposition. Am J Respir Cell Mol Biol 11(5):531–539

    Article  CAS  PubMed  Google Scholar 

  • Dakhlallah D, Batte K, Wang Y et al (2013) Epigenetic regulation of miR-17 ~ 92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 187(4):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Aglio PP, Pesci A, Bertorelli G et al (1988) Study of immune complexes in bronchoalveolar lavage fluids. Respiration 54(Suppl 1):36–41

    PubMed  Google Scholar 

  • Daniil Z, Kitsanta P, Kapotsis G et al (2005) CD8+ T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis. Respir Res 6:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Degryse AL, Tanjore H, Xu XC et al (2011) TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment. Am J Physiol Lung Cell Mol Physiol 300(6):L887–L897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delva E, Tucker DK, Kowalczyk AP (2009) The desmosome. Cold Spring Harb Perspect Biol 1(2):a002543

    Article  PubMed  PubMed Central  Google Scholar 

  • Demopoulos K, Arvanitis DA, Vassilakis DA et al (2002) MYCL1, FHIT, SPARC, p16(INK4) and TP53 genes associated to lung cancer in idiopathic pulmonary fibrosis. J Cell Mol Med 6(2):215–222

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Dolgachev V, Wu Z et al (2013) Essential role of stem cell factor-c-Kit signalling pathway in bleomycin-induced pulmonary fibrosis. J Pathol 230(2):205–214

    Article  CAS  PubMed  Google Scholar 

  • Dobashi N, Fujita J, Murota M et al (2000) Elevation of anti-cytokeratin 18 antibody and circulating cytokeratin 18: anti-cytokeratin 18 antibody immune complexes in sera of patients with idiopathic pulmonary fibrosis. Lung 178(3):171–179

    Article  CAS  PubMed  Google Scholar 

  • Dzamba BJ, Wu H, Jaenisch R et al (1993) Fibronectin binding site in type I collagen regulates fibronectin fibril formation. J Cell Biol 121(5):1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Ebihara T, Venkatesan N, Tanaka R et al (2000) Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis. Temporal aspects. Am J Respir Crit Care Med 162(4 Pt 1):1569–1576

    Article  CAS  PubMed  Google Scholar 

  • Egan JJ, Stewart JP, Hasleton PS et al (1995) Epstein-Barr virus replication within pulmonary epithelial cells in cryptogenic fibrosing alveolitis. Thorax 50(12):1234–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkabets M, Gifford AM, Scheel C et al (2011) Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Invest 121(2):784–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erler JT, Weaver VM (2009) Three-dimensional context regulation of metastasis. Clin Exp Metastasis 26(1):35–49

    Article  PubMed  Google Scholar 

  • Farkas L, Farkas D, Gauldie J et al (2011) Transient overexpression of gremlin results in epithelial activation and reversible fibrosis in rat lungs. Am J Respir Cell Mol Biol 44(6):870–878

    Article  CAS  PubMed  Google Scholar 

  • Feghali-Bostwick CA, Tsai CG, Valentine VG et al (2007) Cellular and humoral autoreactivity in idiopathic pulmonary fibrosis. J Immunol 179(4):2592–2599

    Article  CAS  PubMed  Google Scholar 

  • Fernandez Perez ER, Swigris JJ, Forssen AV et al (2013) Identifying an inciting antigen is associated with improved survival in patients with chronic hypersensitivity pneumonitis. Chest 144(5):1644–1651

    Article  PubMed  PubMed Central  Google Scholar 

  • Fielitz J, Philipp S, Herda LR et al (2007) Inhibition of prolyl 4-hydroxylase prevents left ventricular remodelling in rats with thoracic aortic banding. Eur J Heart Fail 9(4):336–342

    Article  CAS  PubMed  Google Scholar 

  • Fingerlin TE, Murphy E, Zhang W et al (2013) Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet 45(6):613–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fireman E, Vardinon N, Burke M et al (1998) Predictive value of response to treatment of T-lymphocyte subpopulations in idiopathic pulmonary fibrosis. Eur Respir J 11(3):706–711

    CAS  PubMed  Google Scholar 

  • Fletcher AA, Evans CM (2014) Regulation of microbial populations and immune functions by Muc5b. Ann Am Thorac Soc 11:S80

    Article  PubMed Central  Google Scholar 

  • Froese AR, Shimbori C, Bellaye PS et al (2016) Stretch induced activation of TGF-β1 in pulmonary fibrosis. Am J Respir Crit Care Med 194(1):84–96

    Google Scholar 

  • Fujishima S, Shiomi T, Yamashita S et al (2010) Production and activation of matrix metalloproteinase 7 (matrilysin 1) in the lungs of patients with idiopathic pulmonary fibrosis. Arch Pathol Lab Med 134(8):1136–1142

    CAS  PubMed  Google Scholar 

  • Fukuda Y, Ishizaki M, Kudoh S et al (1998) Localization of matrix metalloproteinases-1, -2, and -9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases. Lab Invest 78(6):687–698

    CAS  PubMed  Google Scholar 

  • Gibbons MA, MacKinnon AC, Ramachandran P et al (2011) Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med 184(5):569–581

    Article  CAS  PubMed  Google Scholar 

  • Gifford AH, Matsuoka M, Ghoda LY et al (2012) Chronic inflammation and lung fibrosis: pleotropic syndromes but limited distinct phenotypes. Mucosal Immunol 5(5):480–484

    CAS  PubMed  Google Scholar 

  • Goodwin A, Jenkins G (2009) Role of integrin-mediated TGFbeta activation in the pathogenesis of pulmonary fibrosis. Biochem Soc Trans 37(Pt 4):849–854

    Article  CAS  PubMed  Google Scholar 

  • Gribbin J, Hubbard R, Smith C (2009) Role of diabetes mellitus and gastro-oesophageal reflux in the aetiology of idiopathic pulmonary fibrosis. Respir Med 103(6):927–931

    Article  PubMed  Google Scholar 

  • Hambly N, Shimbori C, Kolb M (2015) Molecular classification of idiopathic pulmonary fibrosis: personalized medicine, genetics and biomarkers. Respirology 20(7):101022

    Article  Google Scholar 

  • Haston CK, Wang M, Dejournett RE et al (2002) Bleomycin hydrolase and a genetic locus within the MHC affect risk for pulmonary fibrosis in mice. Hum Mol Genet 11(16):1855–1863

    Article  CAS  PubMed  Google Scholar 

  • Henderson NC, Arnold TD, Katamura Y et al (2013) Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19:1617–1624

    Article  CAS  PubMed  Google Scholar 

  • Herold S, Mayer K, Lohmeyer J (2011) Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Front Immunol 2:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinz B (2012) Mechanical aspects of lung fibrosis: a spotlight on the myofibroblast. Proc Am Thorac Soc 9(3):137–147

    Article  CAS  PubMed  Google Scholar 

  • Hinz B, Phan SH, Thannickal VJ et al (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170(6):1807–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson U, Laitinen T, Tukiainen P (2002) Nationwide prevalence of sporadic and familial idiopathic pulmonary fibrosis: evidence of founder effect among multiplex families in Finland. Thorax 57(4):338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homer RJ, Elias JA, Lee CG et al (2011) Modern concepts on the role of inflammation in pulmonary fibrosis. Arch Pathol Lab Med 135(6):780–788

    CAS  PubMed  Google Scholar 

  • Horan GS, Wood S, Ona V et al (2008) Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 177(1):56–65

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Akaishi S, Ogawa R (2012) Mechanosignaling pathways in cutaneous scarring. Arch Dermatol Res 304(8):589–597

    Article  CAS  PubMed  Google Scholar 

  • Hubbard R, Lewis S, Richards K et al (1996) Occupational exposure to metal or wood dust and aetiology of cryptogenic fibrosing alveolitis. Lancet 347(8997):284–289

    Article  CAS  PubMed  Google Scholar 

  • Hubbard R, Cooper M, Antoniak M et al (2000) Risk of cryptogenic fibrosing alveolitis in metal workers. Lancet 355(9202):466–467

    Article  CAS  PubMed  Google Scholar 

  • Humbles AA, Lloyd CM, McMillan SJ et al (2004) A critical role for eosinophils in allergic airways remodeling. Science 305(5691):1776–1779

    Article  CAS  PubMed  Google Scholar 

  • Hung C, Linn G, Chow YH et al (2013) Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 188(7):820–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunninghake GM, Hatabu H, Okajima Y et al (2013) MUC5B promoter polymorphism and interstitial lung abnormalities. N Engl J Med 368(23):2192–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai K, Mori T, Yamada N et al (1994) Idiopathic pulmonary fibrosis. Epidemiologic approaches to occupational exposure. Am J Respir Crit Care Med 150(3):670–675

    Article  CAS  PubMed  Google Scholar 

  • Johnston ID, Prescott RJ, Chalmers JC et al (1997) British Thoracic Society study of cryptogenic fibrosing alveolitis: current presentation and initial management. Fibrosing Alveolitis Subcommittee of the Research Committee of the British Thoracic Society. Thorax 52(1):38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahloon RA, Xue J, Bhargava A et al (2013) Patients with idiopathic pulmonary fibrosis with antibodies to heat shock protein 70 have poor prognoses. Am J Respir Crit Care Med 187(7):768–775

    Article  PubMed  PubMed Central  Google Scholar 

  • Karki S, Surolia R, Hock TD et al (2014) Wilms’ tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis. FASEB J 28(3):1122–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kass DJ, Yu G, Loh KS et al (2012) Cytokine-like factor 1 gene expression is enriched in idiopathic pulmonary fibrosis and drives the accumulation of CD4+ T cells in murine lungs: evidence for an antifibrotic role in bleomycin injury. Am J Pathol 180(5):1963–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KK, Wei Y, Szekeres C et al (2009) Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest 119(1):213–224

    CAS  PubMed  Google Scholar 

  • King TE, Pardo A, Selman M (2011) Idiopathic pulmonary fibrosis. Lancet 378(9807):1949–1961

    Article  PubMed  Google Scholar 

  • King TE Jr, Bradford WZ, Castro-Bernardini S, ASCEND Study Group et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370(22):2083–2092

    Article  PubMed  CAS  Google Scholar 

  • Klingberg F, Hinz B, White ES (2013) The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 229(2):298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koli K, Myllarniemi M, Vuorinen K et al (2006) Bone morphogenetic protein-4 inhibitor gremlin is overexpressed in idiopathic pulmonary fibrosis. Am J Pathol 169(1):61–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komura K, Yanaba K, Horikawa M et al (2008) CD19 regulates the development of bleomycin-induced pulmonary fibrosis in a mouse model. Arthritis Rheum 58(11):3574–3584

    Article  CAS  PubMed  Google Scholar 

  • Konigshoff M, Kramer M, Balsara N et al (2009) WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest 119(4):772–787

    PubMed  PubMed Central  Google Scholar 

  • Korfei M, Ruppert C, Mahavadi P et al (2008) Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 178(8):838–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krausgruber T, Blazek K, Smallie T et al (2011) IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 12(3):231–238

    Article  CAS  PubMed  Google Scholar 

  • Kuwano K, Maeyama T, Inoshima I et al (2002) Increased circulating levels of soluble Fas ligand are correlated with disease activity in patients with fibrosing lung diseases. Respirology 7(1):15–21

    Article  PubMed  Google Scholar 

  • Lagares D, Busnadiego O, García-Fernández RA et al (2012) Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis Rheum 64(5):1653–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lama VN, Phan SH (2006) The extrapulmonary origin of fibroblasts: stem/progenitor cells and beyond. Proc Am Thorac Soc 3(4):373–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanone S, Zheng T, Zhu Z et al (2002) Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodeling. J Clin Invest 110(4):463–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent GJ (1986) Lung collagen: more than scaffolding. Thorax 41(6):418–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent GJ, Harrison NK, McAnulty RJ (1988) The regulation of collagen production in normal lung and during interstitial lung disease. Postgrad Med J 64(Suppl 4):26–34

    PubMed  Google Scholar 

  • Lawson WE, Cheng DS, Degryse AL et al (2011) Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci USA 108(26):10562–10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leask A, Abraham DJ (2003) The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 81(6):355–363

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Shah B, Moioli EK et al (2010) CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest 120(9):3340–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitinger B, Hohenester E (2007) Mammalian collagen receptors. Matrix Biol 26(3):146–155

    Article  CAS  PubMed  Google Scholar 

  • Lepparanta O, Sens C, Salmenkivi K et al (2012) Regulation of TGF-β storage and activation in the human idiopathic pulmonary fibrosis lung. Cell Tissue Res 348(3):491–503

    Article  PubMed  CAS  Google Scholar 

  • Levi-Schaffer F, Rubinchik E (1995) Activated mast cells are fibrogenic for 3T3 fibroblasts. J Invest Dermatol 104(6):999–1003

    Article  CAS  PubMed  Google Scholar 

  • Levi-Schaffer F, Garbuzenko E, Rubin A et al (1999) Human eosinophils regulate human lung- and skin-derived fibroblast properties in vitro: a role for transforming growth factor beta (TGF-beta). Proc Natl Acad Sci USA 96(17):9660–9665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy D, Neuhausen SL, Hunt SC et al (2010) Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci USA 107(20):9293–9298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley B, Collard HR, King TE (2011) Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183(4):431–440

    Article  PubMed  Google Scholar 

  • Li Y, Yang J, Dai C et al (2003) Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 112(4):503–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Tan X, Dai C et al (2009) Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J Am Soc Nephrol 20(9):1907–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Jiang D, Liang J et al (2011) Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med 208(7):1459–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lino Cardenas CL, Henaoui IS, Courcot E et al (2013) miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet 9(2):e1003291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JY, Morris GF, Lei WH et al (1997) Rapid activation of PDGF-A and -B expression at sites of lung injury in asbestos-exposed rats. Am J Respir Cell Mol Biol 17(2):129–140

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Liu J, Weng D et al (2010a) CD4+CD25+Foxp3+ regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice. PLoS One 5(11):e15404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu F, Mih JD, Shea BS et al (2010b) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190(4):693–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Friggeri A, Yang Y et al (2010c) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207(8):1589–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Re S, Lecocq M, Uwambayinema F et al (2011) Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis. Am J Respir Crit Care Med 184(11):1270–1281

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Wilhelmi M (2015) Genetics affect IPF treatment response to N-acetylcysteine. Lancet Respir Med 3(10):752

    Article  PubMed  Google Scholar 

  • Lu P, Takai K, Weaver VM et al (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12)

    Google Scholar 

  • Luzina IG, Todd NW, Iacono AT et al (2008) Roles of T lymphocytes in pulmonary fibrosis. J Leukoc Biol 83(2):237–244

    Article  CAS  PubMed  Google Scholar 

  • Madala SK, Korfhagen TR, Schmidt S et al (2014) Inhibition of the αvβ6 integrin leads to limited alteration of TGFα-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 306:L726–L735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maharaj S, Shimbori C, Kolb M (2013) Fibrocytes in pulmonary fibrosis: a brief synopsis. Eur Respir Rev 22(130):552–557

    Article  PubMed  Google Scholar 

  • Mahendran S, Sethi T (2012) Treatments in idiopathic pulmonary fibrosis: time for a more targeted approach? QJM 105(10):929–934

    Article  PubMed  Google Scholar 

  • Maitra M, Cano CA, Garcia CK (2012) Mutant surfactant A2 proteins associated with familial pulmonary fibrosis and lung cancer induce TGF-β1 secretion. Proc Natl Acad Sci USA 109(51):21064–21069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangino M, Hwang SJ, Spector TD et al (2012) Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet 21(24):5385–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchal-Somme J, Uzunhan Y, Marchand-Adam S et al (2006) Cutting edge: nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis. J Immunol 176(10):5735–5739

    Article  CAS  PubMed  Google Scholar 

  • Marinkovic A, Mih JD, Park JA et al (2012) Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness. Am J Physiol Lung Cell Mol Physiol 303(3):L169–L180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinkovic A, Liu F, Tschumperlin DJ (2013) Matrices of physiologic stiffness potently inactivate idiopathic pulmonary fibrosis fibroblasts. Am J Respir Cell Mol Biol 48(4):422–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  • Mathai SK, Pedersen BS, Smith K et al (2016) Desmoplakin (DSP) variants are associated with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 193:1151–1160

    Article  PubMed  Google Scholar 

  • Mayadas TN, Tsokos GC, Tsuboi N (2009) Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury. Circulation 120(20):2012–2024

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehrad B, Strieter RM (2012) Fibrocytes and the pathogenesis of diffuse parenchymal lung disease. Fibrogenesis Tissue Repair 5 Suppl 1:S22

    Article  Google Scholar 

  • Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77(4):1033–1079

    CAS  PubMed  Google Scholar 

  • Milosevic J, Pandit K, Magister M et al (2012) Profibrotic role of miR-154 in pulmonary fibrosis. Am J Respir Cell Mol Biol 47(6):879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minshall EM, Leung DY, Martin RJ et al (1997) Eosinophil-associated TGF-beta1 mRNA expression and airways fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 17(3):326–333

    Article  CAS  PubMed  Google Scholar 

  • Miyake Y, Sasaki S, Yokoyama T et al (2005) Occupational and environmental factors and idiopathic pulmonary fibrosis in Japan. Ann Occup Hyg 49(3):259–265

    Article  PubMed  Google Scholar 

  • Miyoshi K, Yanagi S, Kawahara K et al (2013) Epithelial Pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am J Respir Crit Care Med 187(3):262–275

    Article  CAS  PubMed  Google Scholar 

  • Moore BB, Murray L, Das A et al (2006) The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am J Respir Cell Mol Biol 35(2):175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98(10):1512–1520

    Article  CAS  PubMed  Google Scholar 

  • Mu D, Cambier S, Fjellbirkeland L et al (2002) The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 157(3):493–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munger JS, Sheppard D (2011) Cross talk among TGF-β signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol 3(11):a005017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munger JS, Huang X, Kawakatsu H et al (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96(3):319–328

    Article  CAS  PubMed  Google Scholar 

  • Murphy G, Nagase H (2008) Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol 4(3):128–135

    Article  CAS  PubMed  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray LA, Argentieri RL, Farrell FX et al (2008) Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13 and CCL2. Int J Biochem Cell Biol 40(10):2174–2182

    Article  CAS  PubMed  Google Scholar 

  • Myllarniemi M, Lindholm P, Ryynanen MJ et al (2008a) Gremlin-mediated decrease in bone morphogenetic protein signaling promotes pulmonary fibrosis. Am J Respir Crit Care Med 177(3):321–329

    Article  CAS  PubMed  Google Scholar 

  • Myllarniemi M, Vuorinen K, Pulkkinen V et al (2008b) Gremlin localization and expression levels partially differentiate idiopathic interstitial pneumonia severity and subtype. J Pathol 214(4):456–463

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Liu T, Yu H et al (2013) Lung bone marrow-derived hematopoietic progenitor cells enhance pulmonary fibrosis. Am J Respir Crit Care Med 188(8):976–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimni ME (1983) Collagen: structure, function, and metabolism in normal and fibrotic tissues. Semin Arthritis Rheum 13(1):1–86

    Article  CAS  PubMed  Google Scholar 

  • Noble PW, Barkauskas CE, Jiang D (2012) Pulmonary fibrosis: patterns and perpetrators. J Clin Invest 122(8):2756–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noth I, Zhang Y, Ma SF et al (2013) Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir Med 1(4):309–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuovo GJ, Hagood JS, Magro CM et al (2012) The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis. Mod Pathol 25(3):416–433

    Article  CAS  PubMed  Google Scholar 

  • Ogushi F, Tani K, Endo T et al (2001) Autoantibodies to IL-1 alpha in sera from rapidly progressive idiopathic pulmonary fibrosis. J Med Invest 48(3–4):181–189

    CAS  PubMed  Google Scholar 

  • Olsen KC, Sapinoro RE, Kottmann RM et al (2011) Transglutaminase 2 and its role in pulmonary fibrosis. Am J Respir Crit Care Med 184(6):699–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz LA, Moroz K, Liu JY et al (1998) Alveolar macrophage apoptosis and TNF-alpha, but not p53, expression correlate with murine response to bleomycin. Am J Physiol 275(6 Pt 1):L1208–L1218

    CAS  PubMed  Google Scholar 

  • Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit KV, Milosevic J, Kaminski N (2011) MicroRNAs in idiopathic pulmonary fibrosis. Transl Res 157(4):191–199

    Article  CAS  PubMed  Google Scholar 

  • Pardo A, Selman M, Kaminski N (2008) Approaching the degradome in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 40(6–7):1141–1155

    Article  CAS  PubMed  Google Scholar 

  • Patti MG, Tedesco P, Golden J et al (2005) Idiopathic pulmonary fibrosis: how often is it really idiopathic? J Gastrointest Surg 9(8):1053–1056, discussion 6–8

    Article  PubMed  Google Scholar 

  • Peljto AL, Zhang Y, Fingerlin TE et al (2013) Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA 309(21):2232–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson MW, Monick M, Hunninghake GW (1987) Prognostic role of eosinophils in pulmonary fibrosis. Chest 92(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Phillips RJ, Burdick MD, Hong K et al (2004) Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114(3):438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piguet PF, Collart MA, Grau GE et al (1989) Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J Exp Med 170(3):655–663

    Article  CAS  PubMed  Google Scholar 

  • Polakoff PL, Horn BR, Scherer OR (1979) Prevalence of radiographic abnormalities among Northern California shipyard workers. Ann N Y Acad Sci 330:333–339

    Article  CAS  PubMed  Google Scholar 

  • Ponticos M, Holmes AM, Shi-wen X et al (2009) Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum 60(7):2142–2155

    Article  CAS  PubMed  Google Scholar 

  • Quan TE, Cowper SE, Bucala R (2006) The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 8(2):145–150

    Article  CAS  PubMed  Google Scholar 

  • Radstake TR, van Bon L, Broen J et al (2009) Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFbeta expression. PLoS One 4(6):e5981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raghu G, Weycker D, Edelsberg J et al (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816

    Article  PubMed  Google Scholar 

  • Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183(6):788–824

    Article  PubMed  Google Scholar 

  • Reber LL, Daubeuf F, Pejler G et al (2014) Mast cells contribute to bleomycin-induced lung inflammation and injury in mice through a chymase/mast cell protease 4-dependent mechanism. J Immunol 192(4):1847–1854

    Article  CAS  PubMed  Google Scholar 

  • Reed NI, Jo H, Chen C et al (2015) The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med 20:7

    Google Scholar 

  • Reilkoff RA, Peng H, Murray LA et al (2013) Semaphorin 7a+ regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor-β1-induced pulmonary fibrosis. Am J Respir Crit Care Med 187(2):180–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiman RM, Thompson RW, Feng CG et al (2006) Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect Immun 74(3):1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richeldi L, du Bois RM, Raghu G, INPULSIS Trial Investigators et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370(22):2071–2082

    Article  PubMed  CAS  Google Scholar 

  • Rider CC, Mulloy B (2010) Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J 429(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Rock JR, Barkauskas CE, Cronce MJ et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci USA 108(52):E1475–E1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rom WN, Harkin T (1991) Dehydroepiandrosterone inhibits the spontaneous release of superoxide radical by alveolar macrophages in vitro in asbestosis. Environ Res 55(2):145–156

    Article  CAS  PubMed  Google Scholar 

  • Rossi GA, Szapiel S, Ferrans VJ et al (1987) Susceptibility to experimental interstitial lung disease is modified by immune- and non-immune-related genes. Am Rev Respir Dis 135(2):448–455

    CAS  PubMed  Google Scholar 

  • Rowe RG, Keena D, Sabeh F et al (2011) Pulmonary fibroblasts mobilize the membrane-tethered matrix metalloprotease, MT1-MMP, to destructively remodel and invade interstitial type I collagen barriers. Am J Physiol Lung Cell Mol Physiol 301(5):L683–L692

    Article  CAS  PubMed  Google Scholar 

  • Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341(1):126–140

    Article  CAS  PubMed  Google Scholar 

  • Rozin GF, Gomes MM, Parra ER et al (2005) Collagen and elastic system in the remodelling process of major types of idiopathic interstitial pneumonias (IIP). Histopathology 46(4):413–421

    Article  CAS  PubMed  Google Scholar 

  • Rubinchik E, Levi-Schaffer F (1994) Mast cells and fibroblasts: two interacting cells. Int J Clin Lab Res 24(3):139–142

    Article  CAS  PubMed  Google Scholar 

  • Ruiz PA, Jarai G (2012) Discoidin domain receptors regulate the migration of primary human lung fibroblasts through collagen matrices. Fibrogenesis Tissue Repair 5:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaida I, Matsumura Y, Kubota M et al (1996) The prolyl 4-hydroxylase inhibitor HOE 077 prevents activation of Ito cells, reducing procollagen gene expression in rat liver fibrosis induced by choline-deficient L-amino acid-defined diet. Hepatology 23(4):755–763

    CAS  PubMed  Google Scholar 

  • Sakaida I, Uchida K, Hironaka K et al (1999) Prolyl 4-hydroxylase inhibitor (HOE 077) prevents TIMP-1 gene expression in rat liver fibrosis. J Gastroenterol 34(3):376–377

    Article  CAS  PubMed  Google Scholar 

  • San Antonio JD, Lander AD, Karnovsky MJ et al (1994) Mapping the heparin-binding sites on type I collagen monomers and fibrils. J Cell Biol 125(5):1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Takeuchi O, Vandenbon A et al (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11(10):936–944

    Article  CAS  PubMed  Google Scholar 

  • Schrier DJ, Phan SH, McGarry BM (1983) The effects of the nude (nu/nu) mutation on bleomycin-induced pulmonary fibrosis. A biochemical evaluation. Am Rev Respir Dis 127(5):614–617

    Article  CAS  PubMed  Google Scholar 

  • Schwartz DA, Van Fossen DS, Davis CS et al (1994) Determinants of progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 149(2 Pt 1):444–449

    Article  CAS  PubMed  Google Scholar 

  • Seibold MA, Wise AL, Speer MC et al (2011) A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med 364(16):1503–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selikoff IJ, Lilis R, Nicholson WJ (1979) Asbestos disease in United States shipyards. Ann N Y Acad Sci 330:295–311

    Article  CAS  PubMed  Google Scholar 

  • Selman M, Pardo A (2012) Alveolar epithelial cell disintegrity and subsequent activation: a key process in pulmonary fibrosis. Am J Respir Crit Care Med 186(2):119–121

    Article  CAS  PubMed  Google Scholar 

  • Selman M, Pardo A (2014) Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis: an integral model. Am J Respir Crit Care Med 189:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Selman M, Montano M, Ramos C et al (1986) Concentration, biosynthesis and degradation of collagen in idiopathic pulmonary fibrosis. Thorax 41(5):355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selman M, King TE, Pardo A, Society AT, Society ER, Physicians ACoC (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 134(2):136–151

    Article  CAS  PubMed  Google Scholar 

  • Selman M, Pardo A, Barrera L et al (2006) Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir Crit Care Med 173(2):188–198

    Article  CAS  PubMed  Google Scholar 

  • Selman M, Pardo A, Kaminski N (2008) Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? PLoS Med 5(3):e62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shannon JM, Hyatt BA (2004) Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 66:625–645

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, MacLean JA, Pinto C et al (1996) The effect of an anti-CD3 monoclonal antibody on bleomycin-induced lymphokine production and lung injury. Am J Respir Crit Care Med 154(1):193–200

    Article  CAS  PubMed  Google Scholar 

  • Shimbori C, Gauldie J, Kolb M (2013) Extracellular matrix microenvironment contributes actively to pulmonary fibrosis. Curr Opin Pulm Med 19(5):446–452

    Article  CAS  PubMed  Google Scholar 

  • Shulenin S, Nogee LM, Annilo T et al (2004) ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med 350(13):1296–1303

    Article  CAS  PubMed  Google Scholar 

  • Sisson TH, Mendez M, Choi K et al (2010) Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 181(3):254–263

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar P, Ntolios P, Jenkins G et al (2012) Into the matrix: targeting fibroblasts in pulmonary fibrosis. Curr Opin Pulm Med 18(5):462–469

    Article  CAS  PubMed  Google Scholar 

  • Solomon DH, Kavanaugh AJ, Schur PH, Guidelines ACoRAHCoIT (2002) Evidence-based guidelines for the use of immunologic tests: antinuclear antibody testing. Arthritis Rheum 47(4):434–444

    Article  PubMed  Google Scholar 

  • Song E, Ouyang N, Horbelt M et al (2000) Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 204(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Spira A, Beane J, Shah V et al (2004) Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci USA 101(27):10143–10148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starcher B, Cook G, Gallop P et al (1987) Isolation and characterization of a pentameric amino acid from elastin. Connect Tissue Res 16(1):15–25

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Keshav S, Harris N et al (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292

    Article  CAS  PubMed  Google Scholar 

  • Stewart JP, Egan JJ, Ross AJ et al (1999) The detection of Epstein-Barr virus DNA in lung tissue from patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 159(4 Pt 1):1336–1341

    Article  CAS  PubMed  Google Scholar 

  • Stewart GA, Hoyne GF, Ahmad SA et al (2003) Expression of the developmental Sonic hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes. J Pathol 199(4):488–495

    Article  CAS  PubMed  Google Scholar 

  • Stock CJ, Sato H, Fonseca C et al (2013) Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. Thorax 68(5):436–441

    Article  PubMed  Google Scholar 

  • Sunaga H, Matsui H, Ueno M et al (2013) Deranged fatty acid composition causes pulmonary fibrosis in Elovl6-deficient mice. Nat Commun 4:2563

    PubMed  Google Scholar 

  • Tang YW, Johnson JE, Browning PJ et al (2003) Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis. J Clin Microbiol 41(6):2633–2640

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanjore H, Xu XC, Polosukhin VV et al (2009) Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 180(7):657–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatler AL, Jenkins G (2012) TGF-β activation and lung fibrosis. Proc Am Thorac Soc 9(3):130–136

    Article  CAS  PubMed  Google Scholar 

  • Thannickal VJ, Horowitz JC (2006) Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3(4):350–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142

    Article  CAS  PubMed  Google Scholar 

  • Thomas AQ, Lane K, Phillips J et al (2002) Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med 165(9):1322–1328

    Article  PubMed  Google Scholar 

  • Tiemessen MM, Jagger AL, Evans HG et al (2007) CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA 104(49):19446–19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobin RW, Pope CE, Pellegrini CA et al (1998) Increased prevalence of gastroesophageal reflux in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 158(6):1804–1808

    Article  CAS  PubMed  Google Scholar 

  • Todd NW, Luzina IG, Atamas SP (2012) Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis Tissue Repair 5(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B et al (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Article  CAS  PubMed  Google Scholar 

  • Torres-Gonzalez E, Bueno M, Tanaka A et al (2012) Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol 46(6):748–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torry DJ, Richards CD, Podor TJ et al (1994) Anchorage-independent colony growth of pulmonary fibroblasts derived from fibrotic human lung tissue. J Clin Invest 93(4):1525–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo G, Hartigan AJ, Hogaboam CM (2010) T regulatory cells and attenuated bleomycin-induced fibrosis in lungs of CCR7−/− mice. Fibrogenesis Tissue Repair 3:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsakiri KD, Cronkhite JT, Kuan PJ et al (2007) Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci USA 104(18):7552–7557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujino K, Takeda Y, Arai T et al (2012) Tetraspanin CD151 protects against pulmonary fibrosis by maintaining epithelial integrity. Am J Respir Crit Care Med 186(2):170–180

    Article  CAS  PubMed  Google Scholar 

  • Turner-Warwick M, Burrows B, Johnson A (1980) Cryptogenic fibrosing alveolitis: response to corticosteroid treatment and its effect on survival. Thorax 35(8):593–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueha S, Shand FH, Matsushima K (2012) Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis. Front Immunol 3:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Vancheri C, Failla M, Crimi N et al (2010) Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur Respir J 35(3):496–504

    Article  CAS  PubMed  Google Scholar 

  • Veeman MT, Slusarski DC, Kaykas A et al (2003) Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13(8):680–685

    Article  CAS  PubMed  Google Scholar 

  • Veerappan A, O’Connor NJ, Brazin J et al (2013) Mast cells: a pivotal role in pulmonary fibrosis. DNA Cell Biol 32(4):206–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesan N, Ouzzine M, Kolb M et al (2011) Increased deposition of chondroitin/dermatan sulfate glycosaminoglycan and upregulation of β1,3-glucuronosyltransferase I in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 300(2):L191–L203

    Article  CAS  PubMed  Google Scholar 

  • Vij R, Noth I (2012) Peripheral blood biomarkers in idiopathic pulmonary fibrosis. Transl Res 159(4):218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuga LJ, Tedrow JR, Pandit KV et al (2014) C-X-C motif chemokine 13 (CXCL13) is a prognostic biomarker of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 189:966–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadsworth SJ, Atsuta R, McIntyre JO et al (2010) IL-13 and TH2 cytokine exposure triggers matrix metalloproteinase 7-mediated Fas ligand cleavage from bronchial epithelial cells. J Allergy Clin Immunol 126(2):366–374, 374.e1–8

    Google Scholar 

  • Wang Y, Kuan PJ, Xing C et al (2009) Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet 84(1):52–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huang C, Reddy Chintagari N et al (2013) miR-375 regulates rat alveolar epithelial cell trans-differentiation by inhibiting Wnt/β-catenin pathway. Nucleic Acids Res 41(6):3833–3844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburton D, Perin L, Defilippo R et al (2008) Stem/progenitor cells in lung development, injury repair, and regeneration. Proc Am Thorac Soc 5(6):703–706

    Article  PubMed  PubMed Central  Google Scholar 

  • Warshamana GS, Pociask DA, Sime P et al (2002) Susceptibility to asbestos-induced and transforming growth factor-beta1-induced fibroproliferative lung disease in two strains of mice. Am J Respir Cell Mol Biol 27(6):705–713

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Rahman S, Ayaub EA et al (2013) Protein misfolding and endoplasmic reticulum stress in chronic lung disease. Chest 143(4):1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Wells RG, Discher DE (2008) Matrix elasticity, cytoskeletal tension, and TGF-beta: the insoluble and soluble meet. Sci Signal 1(10):pe13

    Article  PubMed  PubMed Central  Google Scholar 

  • Westergren-Thorsson G, Sime P, Jordana M (2004) Lung fibroblast clones from normal and fibrotic subjects differ in hyaluronan and decorin production and rate of proliferation. Int J Biochem Cell Biol 36(8):1573–1584

    Article  CAS  PubMed  Google Scholar 

  • Wilson MS, Wynn TA (2009) Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol 2(2):103–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wipff PJ, Rifkin DB, Meister JJ (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179(6):1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wygrecka M, Dahal BK, Kosanovic D et al (2013) Mast cells and fibroblasts work in concert to aggravate pulmonary fibrosis: role of transmembrane SCF and the PAR-2/PKC-α/Raf-1/p44/42 signaling pathway. Am J Pathol 182(6):2094–2108

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18(7):1028–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi S, Xu H, Shan J et al (2013) Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest 123(3):1241–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Kass DJ, Bon J et al (2013) Plasma B lymphocyte stimulator and B cell differentiation in idiopathic pulmonary fibrosis patients. J Immunol 191(5):2089–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Kubo H, Ota C et al (2013) The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells. Respir Res 14:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamashita CM, Dolgonos L, Zemans RL et al (2011) Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis. Am J Pathol 179(4):1733–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Banerjee S, de Freitas A et al (2012) Participation of miR-200 in pulmonary fibrosis. Am J Pathol 180(2):484–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Cui H, Xie N et al (2013) miR-145 regulates myofibroblast differentiation and lung fibrosis. FASEB J 27(6):2382–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh YC, Wei WC, Wang YK et al (2010) Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol 177(4):1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh YC, Lin HH, Tang MJ (2012a) A tale of two collagen receptors, integrin β1 and discoidin domain receptor 1, in epithelial cell differentiation. Am J Physiol Cell Physiol 303(12):C1207–C1217

    Article  CAS  PubMed  Google Scholar 

  • Yeh YT, Lee CI, Lim SH et al (2012b) Convergence of physical and chemical signaling in the modulation of vascular smooth muscle cell cycle and proliferation by fibrillar collagen-regulated P66Shc. Biomaterials 33(28):6728–6738

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Groffen J, Heisterkamp N (2005) Resistance to farnesyltransferase inhibitors in Bcr/Abl-positive lymphoblastic leukemia by increased expression of a novel ABC transporter homolog ATP11a. Blood 106(4):1355–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Noth I, Garcia JG et al (2011) A variant in the promoter of MUC5B and idiopathic pulmonary fibrosis. N Engl J Med 364(16):1576–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang Y, Tao B et al (2012) Loss of Shp2 in alveoli epithelia induces deregulated surfactant homeostasis, resulting in spontaneous pulmonary fibrosis. FASEB J 26(6):2338–2350

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Huang X, Hecker L et al (2013a) Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J Clin Invest 123(3):1096–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Xiong M, Fang L et al (2013b) miR-21-containing microvesicles from injured tubular epithelial cells promote tubular phenotype transition by targeting PTEN protein. Am J Pathol 183(4):1183–1196

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Wang L, Luo X et al (2012) Tollip, an intracellular trafficking protein, is a novel modulator of the transforming growth factor-β signaling pathway. J Biol Chem 287(47):39653–39663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo F, Kaminski N, Eugui E et al (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci USA 99(9):6292–6297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kolb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shimbori, C., Bellaye, PS., Kolb, P., Kolb, M. (2017). Idiopathic Pulmonary Fibrosis. In: Azuma, A., Schechter, M. (eds) Treatment of Cystic Fibrosis and Other Rare Lung Diseases. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0977-1_3

Download citation

Publish with us

Policies and ethics