Circulating microRNAs in Inflammatory Bowel Diseases

  • Maria GazouliEmail author
Part of the Experientia Supplementum book series (EXS, volume 106)


Inflammatory bowel diseases (IBD) are chronic, idiopathic, polygenic diseases with significant genetic heterogeneity. The two major types of IBD are Crohn’s disease (CD) and ulcerative colitis (UlC). It is well known that chronic intestinal inflammation results from the interplay of genetic, immunologic, and environmental factors, so the failure to properly downregulate nonspecific inflammation started by an environmental trigger may lead to the development of IBD. Recent studies indicate several microRNAs (miRNAs) as regulators of important pathways of the immune response and immune cell development, which are crucial to the pathogenesis of a variety of inflammatory diseases, including IBD. Additionally, miRNAs are shown to be crucial regulators of intestinal epithelial barrier function, colonic epithelial cell-derived chemokine expression, and autophagy mechanisms. About 100 miRNAs have been indicated to exhibit altered expression in tissues and blood for UlC and CD, when compared to healthy normal controls. Taking into consideration that to date the diagnosis and follow-up of IBD are performed by invasive colonoscopy, it is well suggested that circulating microRNAs might be promising noninvasive biomarkers for IBD. Therefore, recent studies have focused on comparing miRNAs expression profile in tissue to miRNAs profile in blood, in order to introduce the analysis of circulating microRNAs in the future clinical practice. In this chapter, the role of microRNAs in IBD and the most promising circulating microRNAs will be discussed that could be used as noninvasive biomarkers for IBD diagnosis.


Inflammatory bowel disease Crohn’s disease Ulcerative colitis miRNA Inflammation 


  1. Adams AT, Kennedy NA, Hansen R et al (2014) Two-stage genome-wide methylation profiling in childhood-onset Crohn’s Disease implicates epigenetic alterations at the VMP1/MIR21 and HLA loci. Inflamm Bowel Dis 20:1784–1793CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson CA, Boucher G, Lees CW et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43:246–252CrossRefPubMedPubMedCentralGoogle Scholar
  3. Androulidaki A, Iliopoulos D, Arranz A et al (2009) The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31:220–231CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bazzoni F, Rossato M, Fabbri M et al (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 106:5282–5287CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bian Z, Li L, Cui J et al (2011) Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. J Pathol 225:544–553CrossRefPubMedGoogle Scholar
  6. Brain O, Owens BM, Pichulik T et al (2013) The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity 39:521–536CrossRefPubMedGoogle Scholar
  7. Brant SR, Panhuysen CI, Nicolae D et al (2003) MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet 73:1282–1292CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brest P, Lapaquette P, Souidi M et al (2011) A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet 43:242–245CrossRefPubMedGoogle Scholar
  9. Buchner AM, Blonski W, Lichtenstein GR (2011) Update on the management of Crohn’s disease. Curr Gastroenterol Rep 13:465–474CrossRefPubMedGoogle Scholar
  10. Chamaillard M, Iacob R, Desreumaux P et al (2006) Advances and perspectives in the genetics of inflammatory bowel disease. Clin Gastroenterol Hepatol 4:143–151CrossRefPubMedGoogle Scholar
  11. Chen CZ, Li L, Lodish HF et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86CrossRefPubMedGoogle Scholar
  12. Chen Y, Ge W, Xu L et al (2012) miR- 200b is involved in intestinal fibrosis of Crohn’s disease. Int J Mol Med 29:601–606PubMedPubMedCentralGoogle Scholar
  13. Chen Y, Wang C, Liu Y et al (2013a) miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease. Biochem Biophys Res Commun 438:133–139CrossRefPubMedGoogle Scholar
  14. Chen Y, Xiao Y, Ge W et al (2013b) miR-200b inhibits TGF-β1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells. Cell Death Dis 4:e541CrossRefPubMedPubMedCentralGoogle Scholar
  15. Croxford AL, Mair F, Becher B (2012) IL-23: one cytokine in control of autoimmunity. Eur J Immunol 42:2263–2273CrossRefPubMedGoogle Scholar
  16. Duerr RH, Taylor KD, Brant SR et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463CrossRefPubMedPubMedCentralGoogle Scholar
  17. Duttagupta R, DiRienzo S, Jiang R et al (2012) Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis. PLoS ONE 7, e31241CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ek WE, D’Amato M, Halfvarson J (2014) The history of genetics in inflammatory bowel disease. Ann Gastroenterol 27:294–303PubMedPubMedCentralGoogle Scholar
  19. Escobar TM, Kanellopoulou C, Kugler DG et al (2014) miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity 40:865–879CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fasseu M, Tréton X, Guichard C et al (2010) Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with nflammatory bowel disease. PLoS ONE 5, e13160CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feng X, Wang H, Ye S et al (2012) Up-regulation of microRNA-126 may contribute to pathogenesis of ulcerative colitis via regulating NF-kappaB inhibitor IκBα. PLoS ONE 7, e52782CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fisher SA, Tremelling M, Anderson CA et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 40:710–712CrossRefPubMedPubMedCentralGoogle Scholar
  23. Franchi L, Warner N, Viani K et al (2009) Function of Nod like receptors in microbial recognition and host defense. Immunol Rev 227:106–128CrossRefPubMedPubMedCentralGoogle Scholar
  24. Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ghorpade DS, Sinha AY, Holla S et al (2013) NOD2-nitric oxide-responsive microRNA-146a activates Sonic hedgehog signaling to orchestrate inflammatory responses in murine model of inflammatory bowel disease. J Biol Chem 288:33037–33048CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gibbings D, Mostowy S, Jay F et al (2012) Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 14:1314–1321CrossRefPubMedPubMedCentralGoogle Scholar
  27. Huang Z, Shi T, Zhou Q et al (2014) miR-141 regulates colonic leukocytic trafficking by targeting CXCL12β during murine colitis and human Crohn’s disease. Gut 63:1247–1257CrossRefPubMedGoogle Scholar
  28. Hugot J-P, Chamaiilard M, Zouali H et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603CrossRefPubMedGoogle Scholar
  29. Iborra M, Bernuzzi F, Correale C et al (2013) Identification of serum and tissue micro-RNA expression profiles in different stages of inflammatory bowel disease. Clin Exp Immunol 73:250–258CrossRefGoogle Scholar
  30. Jeker LT, Zhou X, Gershberg K et al (2012) MicroRNA 10a marks regulatory T cells. PLoS ONE 7, e36684CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jiang S, Li C, Olive V et al (2011) Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 118:5487–5497CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kalla R, Ventham NT, Kennedy NA et al (2014) MicroRNAs: new players in IBD. Gut 64:504–517CrossRefPubMedPubMedCentralGoogle Scholar
  34. Koukos G, Polytarchou C, Kaplan JL et al (2013) MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology 145:842–852e2CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734CrossRefPubMedGoogle Scholar
  36. Li QJ, Chau J, Ebert PJ et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161CrossRefPubMedGoogle Scholar
  37. Lu LF, Thai TH, Calado DP et al (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30:80–91CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lu C, Chen J, Xu HG et al (2014) MIR106B and MIR93 prevent removal of bacteria from epithelial cells by disrupting ATG16L1-mediated autophagy. Gastroenterology 146:188–199CrossRefPubMedGoogle Scholar
  39. Molodecky NA, Soon IS, Rabi DM et al (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142:46–54e42CrossRefPubMedGoogle Scholar
  40. Muljo SA, Ansel KM, Kanellopoulou C et al (2005) Aberrant T cell differentiation in the absence of Dicer. J Exp Med 202:261–269CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nata T, Fujiya M, Ueno N et al (2013) MicroRNA-146b improves intestinal injury in mouse colitis by activating nuclear factor-κB and improving epithelial barrier function. J Gene Med 15:249–260CrossRefPubMedGoogle Scholar
  42. Nguyen HT, Dalmasso G, Müller S et al (2014) Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 146:508–519CrossRefPubMedGoogle Scholar
  43. Noble CL, Nimmo ER, Drummond H et al (2005) The contribution of OCTN1/2 variants within the IBD5 locus to disease susceptibility and severity in Crohn’s disease. Gastroenterology 129:1854–1864CrossRefPubMedGoogle Scholar
  44. Ogura Y, Bonen DK, Inohara N et al (2001) A frameshift mutation in Nod2 associated with susceptibility to Crohn’s disease. Nature 411:603–606CrossRefPubMedGoogle Scholar
  45. Paraskevi A, Theodoropoulos G, Papaconstantinou I et al (2012) Circulating MicroRNA in inflammatory bowel disease. J Crohns Colitis 6:900–904CrossRefPubMedGoogle Scholar
  46. Parkes M, Cortes A, van Heel DA et al (2013) Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 14(9):661–673CrossRefPubMedGoogle Scholar
  47. Patel KK, Stappenbeck TS (2013) Autophagy and intestinal homeostasis. Annu Rev Physiol 75:241–262CrossRefPubMedGoogle Scholar
  48. Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3(7):390–407CrossRefPubMedGoogle Scholar
  49. Schulte LN, Westermann AJ, Vogel J (2013) Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 41:542–553CrossRefPubMedGoogle Scholar
  50. Stoll M, Corneliussen B, Costello CM et al (2004) Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet 36:476–480CrossRefPubMedGoogle Scholar
  51. Tang B, Xiao B, Liu Z et al (2010) Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett 584:1481–1486CrossRefPubMedGoogle Scholar
  52. Velu VK, Ramesh R, Srinivasan AR (2012) Circulating MicroRNAs as biomarkers in health and disease. J Clin Diagn Res 6:1791–1795PubMedGoogle Scholar
  53. Westbrook AM, Szakmary A, Schiest RH (2010) Mechanisms of intestinal inflammation and development of associated cancers: lessons learned from mouse models. Mutat Res 705:40–59CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wu F, Zhang S, Dassopoulos T et al (2010) Identification of microRNAs associated with ileal and colonic Crohn’s disease. Inflamm Bowel Dis 16:1729–1738CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wu F, Guo NJ, Tian H et al (2011) Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 17:241–250Google Scholar
  56. Wu F, Dong F, Arendovich N et al (2014) Divergent influence of microRNA-21 deletion on murine colitis phenotypes. Inflamm Bowel Dis 20:1972–1985CrossRefPubMedGoogle Scholar
  57. Xue X, Feng T, Yao S et al (2011) Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40. J Immunol 187:5879–5886CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yang Y, Ma Y, Shi C (2013) Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochem Biophys Res Commun 434:746–752CrossRefPubMedGoogle Scholar
  59. Ye D, Guo S, Al-Sadi R et al (2011) MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 141:1323–1333CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zahm AM, Thayu M, Hand NJ et al (2011) Circulating microRNA is a biomarker of pediatric Crohn disease. J Pediatr Gastroenterol Nutr 53:26–33CrossRefPubMedGoogle Scholar
  61. Zahm AM, Hand NJ, Tsoucas DM et al (2014) Rectal microRNAs are perturbed in pediatric inflammatory bowel disease of the colon. J Crohns Colitis 8:1108–1117CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of MedicineUniversity of AthensAthensGreece

Personalised recommendations