Advertisement

Circulating microRNAs in Neurodegenerative Diseases

  • Margherita Grasso
  • Paola Piscopo
  • Alessio Crestini
  • Annamaria Confaloni
  • Michela A. DentiEmail author
Chapter
Part of the Experientia Supplementum book series (EXS, volume 106)

Abstract

Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by a combination of events that impair normal neuronal function. Although they are considered different disorders, there are overlapping features among them from the clinical, pathological, and genetic points of view. Synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities such as axonal transport defects normally precede the neuronal loss that is a relatively late event. The diagnosis of many neurodegenerative diseases is mainly based on patient’s cognitive function analysis, and the development of diagnostic methods is complicated by the brain’s capacity to compensate for neuronal loss over a long period of time. This results in the late clinical manifestation of symptoms, a time when successful treatment is no longer feasible. Thus, a noninvasive diagnostic method based on early events detection is particularly important. In the last years, some biomarkers expressed in human body fluids have been proposed. microRNAs (miRNAs), with their high stability, tissue- or cell type-specific expression, lower cost, and shorter time in the assay development, could constitute a good tool to obtain an early disease diagnosis for a wide number of human pathologies, including neurodegenerative diseases. The possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative disorders is a highly promising approach for developing minimally invasive screening tests and to identify new therapeutic targets.

Keywords

Circulating miRNAs Neurodegenerative diseases Alzheimer’s disease Parkinson’s disease Amyotrophic lateral sclerosis Huntington’s disease Prion disease Spinocerebellar Ataxia Animal models 

References

  1. Alexandrov PN, Dua P, Hill JM et al (2012) microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol 3:365–373PubMedPubMedCentralGoogle Scholar
  2. Armstrong RA, Lantos PL, Cairns NJ (2005) Overlap between neurodegenerative disorders. Neuropathology 25:111–124CrossRefPubMedGoogle Scholar
  3. Bateman RJ, Xiong C, Benzinger TLS et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bekris LM, Lutz F, Montine TJ et al (2013) MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers 18:455–466CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40:10937–10949CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhatnagar S, Chertkow H, Schipper HM et al (2014) Increased microRNA-34c abundance in Alzheimer’s disease circulating blood plasma. Front Mol Neurosci 7:2. doi: 10.3389/fnmol.2014.00002 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Botta-Orfila T, Morató X, Compta Y et al (2014) Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J Neurosci Res 92:1071–1077CrossRefPubMedGoogle Scholar
  8. Brunden KR, Trojanowski JQ, Smith AB et al (2014) Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem 22:5040–5049CrossRefPubMedGoogle Scholar
  9. Burgos K, Malenica I, Metpally R et al (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS ONE 9, e94839CrossRefPubMedPubMedCentralGoogle Scholar
  10. Butovsky O, Siddiqui S, Gabriely G et al (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122:3063–3087CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cardo LF, Coto E, de Mena L et al (2013) Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol 260:1420–1422CrossRefPubMedGoogle Scholar
  12. Chevillet JR, Lee I, Briggs HA et al (2014) Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules 19:6080–6105CrossRefPubMedGoogle Scholar
  13. Cogswell JP, Ward J, Taylor IA et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41CrossRefPubMedGoogle Scholar
  14. Coppedè F (2012) Genetics and epigenetics of Parkinson’s disease. Sci World J 2012:489830. doi: 10.1100/2012/489830 CrossRefGoogle Scholar
  15. Craig-Schapiro R, Fagan AM, Holtzman DM (2009) Biomarkers of Alzheimer’s disease. Neurobiol Dis 35:128–140CrossRefPubMedGoogle Scholar
  16. Davis TH, Cuellar TL, Koch SM et al (2008) Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28:4322–4330CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Felice B, Guida M, Guida M et al (2012) A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 508:35–40CrossRefPubMedGoogle Scholar
  18. De Felice B, Annunziata A, Fiorentino G et al (2014) miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 15:243–253CrossRefPubMedGoogle Scholar
  19. DeCarli C (2003) Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol 2:15–21CrossRefPubMedGoogle Scholar
  20. DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256CrossRefPubMedPubMedCentralGoogle Scholar
  21. Delay C, Hébert SS (2011) MicroRNAs and Alzheimer’s disease mouse models: current insights and future research avenues. Int J Alzheimers Dis 2011:894938PubMedPubMedCentralGoogle Scholar
  22. Egorova P, Popugaeva E, Bezprozvanny I (2015) Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer’s disease. Semin Cell Dev Biol 40:127–133CrossRefPubMedPubMedCentralGoogle Scholar
  23. Freischmidt A, Müller K, Zondler L et al (2014) Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. Brain 137:2938–2950CrossRefPubMedGoogle Scholar
  24. Galimberti D, Villa C, Fenoglio C et al (2014) Circulating miRNAs as potential biomarkers in Alzheimer’s disease. J Alzheimers Dis 42:1261–1267PubMedGoogle Scholar
  25. Garza-Manero S, Arias C, Bermúdez-Rattoni F et al (2015) Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer’s disease. Front Cell Neurosci 9:53. doi: 10.3389/fncel.2015.00053 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gaughwin PM, Ciesla M, Lahiri N et al (2011) Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 20:2225–2237CrossRefPubMedGoogle Scholar
  27. Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer’s disease. J Neurosci 31:14820–14830CrossRefPubMedPubMedCentralGoogle Scholar
  28. Geekiyanage H, Jicha GA, Nelson PT et al (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235:491–496CrossRefPubMedGoogle Scholar
  29. Han G, Sun J, Wang J et al (2014) Genomics in neurological disorders. Genomics Proteomics Bioinformatics 12:156–163CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hébert SS, Horré K, Nicolaï L et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105:6415–6420CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hébert SS, Sergeant N, Buée L (2012) MicroRNAs and the regulation of Tau metabolism. Int J Alzheimers Dis 2012:406561PubMedPubMedCentralGoogle Scholar
  32. Hensley K, Harris-White ME (2015) Redox regulation of autophagy in healthy brain and neurodegeneration. Neurobiol Dis. doi: 10.1016/j.nbd.2015.03.002 [Epub ahead of print]Google Scholar
  33. Hong Z, Shi M, Chung KA et al (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726CrossRefPubMedPubMedCentralGoogle Scholar
  34. Johnson JO, Mandrioli J, Benatar M et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kawaguchi Y, Okamoto T, Taniwaki M et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228CrossRefPubMedGoogle Scholar
  36. Kaye FJ, Shows TB (2000) Assignment of ubiquilin2 (UBQLN2) to human chromosome xp11. 23 → p11.1 by GeneBridge radiation hybrids. Cytogenet Cell Genet 89:116–117CrossRefPubMedGoogle Scholar
  37. Keller A, Leidinger P, Bauer A et al (2011) Toward the blood-borne miRNome of human diseases. Nat Methods 8:841–843. doi: 10.1038/nmeth.1682 CrossRefPubMedGoogle Scholar
  38. Khoo SK, Petillo D, Kang UJ et al (2012) Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. J Parkinsons Dis 2:321–331PubMedGoogle Scholar
  39. Kiko T, Nakagawa K, Tsuduki T et al (2014) MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimers Dis 39:253–259PubMedGoogle Scholar
  40. Kumar P, Dezso Z, MacKenzie C et al (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS ONE 8, e69807CrossRefPubMedPubMedCentralGoogle Scholar
  41. Langbaum JB, Fleisher AS, Chen K et al (2013) Ushering in the study and treatment of preclinical Alzheimer disease. Nat Rev Neurol 9:371–381CrossRefPubMedPubMedCentralGoogle Scholar
  42. Le WD, Rowe DB, Jankovic J et al (1999) Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch Neurol 56:194–200CrossRefPubMedGoogle Scholar
  43. Lehmann SM, Krüger C, Park B et al (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835CrossRefPubMedGoogle Scholar
  44. Leidinger P, Backes C, Deutscher S et al (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14:R78CrossRefPubMedPubMedCentralGoogle Scholar
  45. Long JM, Lahiri DK (2011) MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun 404:889–895CrossRefPubMedGoogle Scholar
  46. Lukiw WJ, Alexandrov PN (2012) Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease (AD) brain. Mol Neurobiol 46:11–19CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lukiw WJ, Alexandrov PN, Zhao Y et al (2012) Spreading of Alzheimer’s disease inflammatory signaling through soluble micro-RNA. Neuroreport 23:621–626CrossRefPubMedPubMedCentralGoogle Scholar
  48. MacDonald M (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  49. Margis R, Margis R, Rieder CRM (2011) Identification of blood microRNAs associated to Parkinsonĭs disease. J Biotechnol 152:96–101CrossRefPubMedGoogle Scholar
  50. Martins M, Rosa A, Guedes LC et al (2011) Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PLoS ONE 6, e25443CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mena NP, Urrutia PJ, Lourido F et al (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21C:92–105CrossRefGoogle Scholar
  52. Michell AW, Lewis SJG, Foltynie T, Barker RA (2004) Biomarkers and Parkinson’s disease. Brain 127:1693–1705CrossRefPubMedGoogle Scholar
  53. Miñones-Moyano E, Porta S, Escaramís G et al (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078CrossRefPubMedGoogle Scholar
  54. Mollenhauer B, Locascio JJ, Schulz-Schaeffer W et al (2011) α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 10:230–240CrossRefPubMedGoogle Scholar
  55. Müller M, Jäkel L, Bruinsma IB et al (2015) MicroRNA-29a is a candidate biomarker for Alzheimer’s disease in cell-free cerebrospinal fluid. Mol Neurobiol. doi: 10.1007/s12035-015-9156-8 [Epub ahead of print]Google Scholar
  56. Nixon RA, Yang DS (2012) Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4. doi: 10.1101/cshperspect.a008839
  57. Parkinson N, Ince PG, Smith MO et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67:1074–1077CrossRefPubMedGoogle Scholar
  58. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144CrossRefPubMedGoogle Scholar
  59. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62CrossRefPubMedGoogle Scholar
  61. Roshan R, Ghosh T, Gadgil M, Pillai B (2012) Regulation of BACE1 by miR-29a/b in a cellular model of Spinocerebellar Ataxia 17. RNA Biol 9:891–899CrossRefPubMedGoogle Scholar
  62. Ryberg H, Bowser R (2008) Protein biomarkers for amyotrophic lateral sclerosis. Expert Rev Proteomics 5:249–262CrossRefPubMedGoogle Scholar
  63. Sala Frigerio C, Lau P, Salta E et al (2013) Reduced expression of miR-27a-3p in CSF of patients with Alzheimer disease. Neurology 81:2103–2106CrossRefPubMedGoogle Scholar
  64. Santa-Maria I, Alaniz ME, Renwick N et al (2015) Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Invest 125:681–686CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sapp PC, Hosler BA, McKenna-Yasek D et al (2003) Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet 73:397–403CrossRefPubMedPubMedCentralGoogle Scholar
  66. Schapira AHV (2013) Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol 26:395–400CrossRefPubMedPubMedCentralGoogle Scholar
  67. Schipper HM, Maes OC, Chertkow HM et al (2007) MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 1:263–274PubMedPubMedCentralGoogle Scholar
  68. Sheinerman KS, Tsivinsky VG, Crawford F et al (2012) Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging 4:590–605CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shi M, Bradner J, Hancock AM et al (2011) Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 69:570–580CrossRefPubMedPubMedCentralGoogle Scholar
  70. Shi Y, Huang F, Tang B et al (2014) MicroRNA profiling in the serums of SCA3/MJD patients. Int J Neurosci 124:97–101CrossRefPubMedGoogle Scholar
  71. Soreq L, Salomonis N, Bronstein M et al (2013) Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 6:10. doi: 10.3389/fnmol.2013.00010 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672CrossRefPubMedGoogle Scholar
  73. Tan L, Yu J-T, Liu Q-Y et al (2014a) Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 336:52–56CrossRefPubMedGoogle Scholar
  74. Tan L, Yu J-T, Tan M-S et al (2014b) Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis 40:1017–1027PubMedGoogle Scholar
  75. Toivonen JM, Manzano R, Oliván S et al (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS ONE 9, e89065CrossRefPubMedPubMedCentralGoogle Scholar
  76. Turner MR, Kiernan MC, Leigh PN et al (2009) Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 8:94–109CrossRefPubMedGoogle Scholar
  77. Vallelunga A, Ragusa M, Di Mauro S et al (2014) Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front Cell Neurosci 8:156. doi: 10.3389/fncel.2014.00156 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Vidal RL, Matus S, Bargsted L et al (2014) Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 35:583–591CrossRefPubMedGoogle Scholar
  79. Wang W-X, Rajeev BW, Stromberg AJ et al (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wang X, Liu P, Zhu H et al (2009) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80:268–273CrossRefPubMedGoogle Scholar
  81. Waragai M, Wei J, Fujita M et al (2006) Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem Biophys Res Commun 345:967–972CrossRefPubMedGoogle Scholar
  82. Xiong R, Wang Z, Zhao Z et al (2014) MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol Aging 35:705–714CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Margherita Grasso
    • 1
  • Paola Piscopo
    • 2
  • Alessio Crestini
    • 2
  • Annamaria Confaloni
    • 2
  • Michela A. Denti
    • 1
    • 3
    Email author
  1. 1.Laboratory of RNA Biology and Biotechnology, Centre for Integrative BiologyUniversity of TrentoTrentoItaly
  2. 2.Department of Cell Biology and NeurosciencesIstituto Superiore di SanitàRomeItaly
  3. 3.Neuroscience InstituteNational Research Council (CNR)PadovaItaly

Personalised recommendations