Advertisement

Circulating microRNAs as Biomarkers in Cardiovascular Diseases

  • Salvatore De Rosa
  • Ciro IndolfiEmail author
Chapter
Part of the Experientia Supplementum book series (EXS, volume 106)

Abstract

MicroRNAs, key regulators of biological processes, are involved in the pathophysiological mechanisms underlying human diseases, including cardiovascular diseases. Their recent discovery revealed a previously unknown layer of pathophysiologic regulators, which also play a key role in the regulation of several aspects of cardiovascular diseases. More recently, it was demonstrated that circulating microRNAs can be measured in the blood. Hence, the potential use of microRNAs as disease biomarkers attracted many research groups. Indeed, their unusual stability in the bloodstream and during prolonged storage make circulating miRs very interesting as potential biomarkers. Circulating microRNAs are emerging as the next generation “smart” biomarkers and could be helpful in further improving the diagnostic and therapeutic processes of cardiovascular diseases. The present chapter summarizes the most relevant experimental evidence on circulating microRNAs in cardiovascular diseases, including arterial remodeling, restenosis, coronary artery disease, acute coronary syndromes, hypertension, heart failure, and ischemic stroke, highlighting potential pathophysiological correlations to the mechanisms underlying cardiovascular diseases.

Keywords

Circulating microRNAs Biomarkers Cardiovascular diseases Epigenetics 

References

  1. Ai J, Zhang R, Li Y et al (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391:73–77CrossRefPubMedGoogle Scholar
  2. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating miRs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  4. Bostjancic E, Zidar N, Stajer D et al (2010) MiRs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115:163–169CrossRefPubMedGoogle Scholar
  5. Casscells W (1992) Migration of smooth muscle and endothelial cells. Critical events in restenosis. Circulation 86:723–729CrossRefPubMedGoogle Scholar
  6. Cheng Y, Tan N, Yang J et al (2010) A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci 119:87–95CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cirillo P, Golino P, Calabrò P (2003) Activated platelets stimulate tissue factor expression in smooth muscle cells. Thromb Res 112:51–57CrossRefPubMedGoogle Scholar
  8. Corsten MF, Dennert R, Jochems S et al (2010) Circulating MicroRNA-208b and MicroRNA 499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506CrossRefPubMedGoogle Scholar
  9. Curcio A, Torella D, Iaconetti C et al (2013) MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts. PLoS ONE 8, e70158CrossRefPubMedPubMedCentralGoogle Scholar
  10. D’Alessandra Y, Devanna P, Limana F et al (2010) Circulating miRs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31:2765–2773CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Rosa S, Fichtlscherer S, Lehmann R et al (2011) Transcoronary concentration gradients of circulating miRs. Circulation 124:1936–1944CrossRefPubMedGoogle Scholar
  12. De Rosa S, Curcio A, Indolfi C (2014) Emerging role of microRNAs in cardiovascular diseases. Circ J 78:567–575CrossRefPubMedGoogle Scholar
  13. Devaux Y, Vausort M, Goretti E et al (2012) Use of circulating miRs to diagnose acute myocardial infarction. Clin Chem 58:559–567CrossRefPubMedGoogle Scholar
  14. Devaux Y, Vausort M, McCann GP et al (2013) A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS ONE 8, e70644CrossRefPubMedPubMedCentralGoogle Scholar
  15. Devaux Y, Mueller M, Haaf P et al (2015) Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med 277:260–271CrossRefPubMedGoogle Scholar
  16. Dharap A, Bowen K, Place R et al (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29:675–687CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dong S, Cheng Y, Yang J et al (2009) MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 284:29514–29525CrossRefPubMedPubMedCentralGoogle Scholar
  18. Edelstein LC, Bray PF (2011) MicroRNAs in platelet production and activation. Blood 117:5289–5296CrossRefPubMedPubMedCentralGoogle Scholar
  19. Eskildsen TV, Jeppesen PL, Schneider M et al (2013) Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 14:11190–11207CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fichtlscherer S, De Rosa S, Fox H et al (2010) Circulating miRs in patients with coronary artery disease. Circ Res 107:677–684CrossRefPubMedGoogle Scholar
  21. Flammer AJ, Gössl M, Widmer RJ et al (2012) Osteocalcin positive CD133+/CD34-/KDR+ progenitor cells as an independent marker for unstable atherosclerosis. Eur Heart J 33:2963–2969CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fukushima Y, Nakanishi M, Nonogi H et al (2011) Assessment of plasma miRs in congestive heart failure. Circ J 75:336–340CrossRefPubMedGoogle Scholar
  23. Gidlof O, Andersson P, van der Pals J et al (2011) Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 118:217–226CrossRefPubMedGoogle Scholar
  24. Goren Y, Kushnir M, Zafrir B et al (2012) Serum levels of miRs in patients with heart failure. Eur Heart Fail 14:147–154CrossRefGoogle Scholar
  25. He M, Gong Y, Shi J et al (2014a) Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis. PLoS ONE 9, e112043CrossRefPubMedPubMedCentralGoogle Scholar
  26. He F, Lv P, Zhao X et al (2014b) Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Mol Cell Biochem 394:137–144CrossRefPubMedGoogle Scholar
  27. Hergenreider E, Heydt S, Tréguer K et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256CrossRefPubMedGoogle Scholar
  28. Iaconetti C, Polimeni A, Sorrentino S et al (2012) Inhibition of mir-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 107:296–309CrossRefPubMedGoogle Scholar
  29. Iaconetti C, Gareri C, Polimeni A et al (2013) Non-coding RNAs: the “dark matter” of cardiovascular pathophysiology. Int J Mol Sci 14:19987–20018CrossRefPubMedPubMedCentralGoogle Scholar
  30. Iaconetti C, De Rosa S, Polimeni A et al (2015) Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res 107(4):522–533, pii: cvv141CrossRefPubMedGoogle Scholar
  31. Ikitimur B, Cakmak HA, Coskunpinar E et al (2015) Relationship between circulating microRNAs and left ventricular mass in symptomatic heart failure patients with systolic dysfunction. Kardiol Pol. doi: 10.5603/KP.a2015.0082 [Epub ahead of print]Google Scholar
  32. Indolfi C, Curcio A (2014) Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy. J Clin Invest 124:1896–1898CrossRefPubMedPubMedCentralGoogle Scholar
  33. Indolfi C, Avvedimento EV, Rapacciuolo A et al (1995) Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nat Med 1:541–545CrossRefPubMedGoogle Scholar
  34. Indolfi C, Di Lorenzo E, Rapacciuolo A et al (2000) 8-Chloro-cAMP inhibits smooth muscle cell proliferation in vitro and neointima forma- tion induced by balloon injury in vivo. J Am Coll Cardiol 36:288–293CrossRefPubMedGoogle Scholar
  35. Indolfi C, Torella D, Cavuto L et al (2001) Effects of balloon injury on neointimal hyperplasia in streptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats. Circulation 103:2980–2986CrossRefPubMedGoogle Scholar
  36. Indolfi C, Torella D, Coppola C et al (2002) Rat carotid artery dilation by PTCA balloon catheter induces neointima formation in presence of IEL rupture. Am J Physiol Heart Circ Physiol 283:H760–H767CrossRefPubMedGoogle Scholar
  37. Indolfi C, Mongiardo A, Curcio A et al (2003) Molecular mechanisms of in-stent restenosis and approach to therapy with eluting stents. Trends Cardiovasc Med 13:142–148CrossRefPubMedGoogle Scholar
  38. Indolfi C, Gasparri C, Vicinanza C et al (2011) Mitogen-activated protein kinases activation in T lymphocytes of patients with acute coronary syndromes. Basic Res Cardiol 106:667–679CrossRefPubMedGoogle Scholar
  39. Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39:959–966CrossRefPubMedGoogle Scholar
  40. Ji X, Takahashi R, Hiura Y et al (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55:1944–1949CrossRefPubMedGoogle Scholar
  41. Kim JM, Jung KH, Chu K et al (2015) Atherosclerosis-related circulating microRNAs as a predictor of stroke recurrence. Transl Stroke Res 6:191–197CrossRefPubMedGoogle Scholar
  42. Kondkar AA, Bray MS, Leal SM et al (2010) VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 8:369–378CrossRefPubMedGoogle Scholar
  43. Kontaraki JE, Marketou ME, Zacharis EA et al (2014) MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens 8:368–375CrossRefPubMedGoogle Scholar
  44. Landry P, Plante I, Ouellet DL et al (2009) Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 16:961–966CrossRefPubMedPubMedCentralGoogle Scholar
  45. Laterza OF, Lim L, Garrett-Engele PW et al (2009) Plasma MiRs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983CrossRefPubMedGoogle Scholar
  46. Li P, Teng F, Gao F et al (2015) Identification of circulating microRNAs as potential biomarkers for detecting acute ischemic stroke. Cell Mol Neurobiol 35:433–447CrossRefPubMedGoogle Scholar
  47. Liu DZ, Tian Y, Ander BP et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101CrossRefPubMedGoogle Scholar
  48. Marques FZ, Campain AE, Tomaszewski M (2011) Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension 58:1093–1098CrossRefPubMedGoogle Scholar
  49. Meder B, Keller A, Vogel B et al (2011) MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106:13–23CrossRefPubMedGoogle Scholar
  50. Meyer SU, Kaiser S, Wagner C et al (2012) Profound effect of profiling platform and normalization strategy on detection of differentially expressed microRNAs--a comparative study. PLoS ONE 7, e38946CrossRefPubMedPubMedCentralGoogle Scholar
  51. Monleau M, Bonnel S, Gostan T et al (2014) Comparison of different extraction techniques to profile microRNAs from human sera and peripheral blood mononuclear cells. BMC Genomics 15:395CrossRefPubMedPubMedCentralGoogle Scholar
  52. Moon JH, Chae MK, Kim KJ et al (2012) Decreased endothelial progenitor cells and increased serum glycated albumin are independently correlated with plaque-forming carotid artery atherosclerosis in type 2 diabetes patients without documented ischemic disease. Circ J 76:2273–2279CrossRefPubMedGoogle Scholar
  53. Nagalla S, Shaw C, Kong X et al (2011) Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 117:5189–5197CrossRefPubMedPubMedCentralGoogle Scholar
  54. Olivieri F, Antonicelli R, Lorenzi M et al (2013) Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol 167:531–536CrossRefPubMedGoogle Scholar
  55. Polimeni A, De Rosa S, Indolfi C (2013) Vascular miRNAs after balloon angioplasty. Trends Cardiovasc Med 23:9–14CrossRefPubMedGoogle Scholar
  56. Qureshi IA, Mehler MF (2010) The emerging role of epigenetics in stroke: II. RNA regulatory circuitry. Arch Neurol 67:1435–1441PubMedPubMedCentralGoogle Scholar
  57. Rayner KJ, Moore KJ (2014) MicroRNA control of high-density lipoprotein metabolism and function. Circ Res 114:183–192CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ren J, Zhang J, Xu N et al (2013) Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS ONE 8, e80738CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43:521–528CrossRefPubMedGoogle Scholar
  60. Rixe J, Rolf A, Fichtlscherer S et al (2011) Plasma levels of circulating microRNAs correlate with coronary plaque burden as assessed by cardiac computed tomography. Circulation 124:1. (Abstract 15162)CrossRefGoogle Scholar
  61. Sanchis J, Bardají A, Bosch X et al (2012) Usefulness of high-sensitivity troponin T for the evaluation of patients with acute chest pain and no or minimal myocardial damage. Am Heart J 164:194–200CrossRefPubMedGoogle Scholar
  62. Santovito D, Mandolini C, Marcantonio P et al (2013) Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Expert Opin Ther Targets 17:217–223CrossRefPubMedGoogle Scholar
  63. Sondermeijer BM, Bakker A, Halliani A et al (2011) Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340 and miRNA624. PLoS ONE 6, e25946CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stellos K, Dimmeler S (2014) Vascular MicroRNAs: from disease mechanisms to therapeutic targets. Circ Res 114:3–4CrossRefPubMedGoogle Scholar
  65. Tan KS, Armugam A, Sepramaniam S et al (2009) Expression profile of MiRs in young stroke patients. PLoS ONE 4, e7689CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tijsen AJ, Creemers EE, Moerland PD et al (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106:1035–1039CrossRefPubMedGoogle Scholar
  67. Torella D, Iaconetti C, Catalucci D et al (2011) MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res 109:880–893CrossRefPubMedGoogle Scholar
  68. Turchinovich A, Weiz L, Langheinz A et al (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233CrossRefPubMedPubMedCentralGoogle Scholar
  69. Voellenkle C, van Rooij J, Cappuzzello C et al (2010) MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics 42:420–426CrossRefPubMedGoogle Scholar
  70. Wang GK, Zhu JQ, Zhang JT et al (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–666CrossRefPubMedGoogle Scholar
  71. Wang R, Li N, Zhang Y et al (2011) Circulating MiRs are promising novel biomarkers of acute myocardial infarction. Intern Med 50:1789–1795CrossRefPubMedGoogle Scholar
  72. Widera C, Gupta SK, Lorenzen JM et al (2011) Diagnostic and prognosticimpact of six circulating miRs in acute coronary syndrome. J Mol Cell Cardiol 51:872–875CrossRefPubMedGoogle Scholar
  73. Willerson JT, Golino P, Eidt J et al (1989) Specific platelet mediators and unstable coronary artery lesions. Experimental evidence and potential clinical implications. Circulation 80:198–205CrossRefPubMedGoogle Scholar
  74. Wong LL, Armugam A, Sepramaniam S et al (2015) Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 17:393–404CrossRefPubMedGoogle Scholar
  75. Xiao J, Jing ZC, Ellinor PT et al (2011) MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med 9:159CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zeng L, Liu J, Wang Y (2011) MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci 3:1265–1272Google Scholar
  77. Zhang Y, Liu D, Chen X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Division of Cardiology, Department of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly
  2. 2.URT-CNR, Magna Graecia UniversityCatanzaroItaly

Personalised recommendations