Circulating microRNA as Biomarkers in Hematological Malignancies

  • Monika Stankova
  • Veronika Kubaczkova
  • Lenka Sedlarikova
  • Sabina SevcikovaEmail author
Part of the Experientia Supplementum book series (EXS, volume 106)


Hematopoiesis is a highly regulated process controlled by a complex network of molecular mechanisms that simultaneously regulate differentiation, proliferation, and apoptosis of hematopoietic stem cells. Aberrant microRNA (miRNA) expression could affect normal hematopoiesis, leading to the development of hematological malignancies. Hematologic cancers, which are caused by malignant transformation of cells of the bone marrow and the lymphatic system, are usually divided into three major groups: leukemias, lymphomas, and monoclonal gammopathies. Hematologic malignancies are highly aggressive diseases with high morbidity and mortality. For these reasons, early and easily obtainable markers for diagnosis, risk stratification, and follow-up are essential for improvement of outcome and survival of these patients. Recent studies have provided new insights about the diagnostic value of expression patterns of miRNAs in serum/plasma in these diseases. While the use of circulating miRNAs is only at the experimental level, it appears to have a great potential. This chapter deals with the use of circulating miRNAs as minimally invasive biomarkers in hematologic malignancies.


Circulating microRNA Leukemia Lymphoma Multiple myeloma MDS 



This work was supported by grant of the Czech Ministry of Health IGA NT14575.


  1. Abramson JS, Shipp MA (2005) Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach. Blood 106:1164–1174CrossRefPubMedGoogle Scholar
  2. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529CrossRefPubMedPubMedCentralGoogle Scholar
  3. Calin GA, Cimmino A, Fabbri M et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 105:5166–5171CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cuccaro A, Bartolomei F, Cupelli E et al (2014) Prognostic factors in Hodgkin lymphoma. Mediterr J Hematol Infect Dis 6, e2014053CrossRefPubMedPubMedCentralGoogle Scholar
  5. Erdogan B, Facey C, Qualtieri J et al (2011) Diagnostic microRNAs in myelodysplastic syndrome. Exp Hematol 39:915–926CrossRefPubMedGoogle Scholar
  6. Fang C, Zhu DX, Dong HJ et al (2012) Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Ann Hematol 91:553–559CrossRefPubMedGoogle Scholar
  7. Fayyad-Kazan H, Bitar N, Najar M et al (2013) Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J Transl Med 11:31CrossRefPubMedPubMedCentralGoogle Scholar
  8. Felli N, Fontana L, Pelosi E et al (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102:18081–18086CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ferrajoli A, Shanafelt TD, Ivan C et al (2013) Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood 122:1891–1899CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gallamini A, Hutchings M, Rigacci L et al (2007) Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin's lymphoma: a report from a joint Italian-Danish study. J Clin Oncol 25:3746–3752CrossRefPubMedGoogle Scholar
  11. Grasedieck S, Sorrentino A, Langer C et al (2013) Circulating microRNAs in hematological diseases: principles, challenges, and perspectives. Blood 121:4977–4984CrossRefPubMedGoogle Scholar
  12. Guo HQ, Huang GL, Guo CC et al (2010) Diagnostic and prognostic value of circulating miR-221 for extranodal natural killer/T-cell lymphoma. Dis Markers 29:251–258CrossRefPubMedGoogle Scholar
  13. Hao M, Zang M, Wendlandt E et al (2015) Low serum miR-19a expression as a novel poor prognostic indicator in multiple myeloma. Int J Cancer 136:1835–1844CrossRefPubMedGoogle Scholar
  14. Hasenclever D, Diehl V (1989) A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med 339:1506–1514CrossRefGoogle Scholar
  15. He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833CrossRefPubMedPubMedCentralGoogle Scholar
  16. He Y, Jiang X, Chen J (2013) The role of miR-150 in normal and malignant hematopoiesis. Oncogene 33:3887–3893CrossRefPubMedGoogle Scholar
  17. Huang JJ, Yu J, Li JY et al (2012) Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Med Oncol 29:2402–2408CrossRefPubMedGoogle Scholar
  18. Hussein K, Theophile K, Büsche G et al (2010) Aberrant microRNA expression pattern in myelodysplastic bone marrow cells. Leuk Res 34:1169–1174CrossRefPubMedGoogle Scholar
  19. Ishihara K, Sasaki D, Tsuruda K et al (2012) Impact of miR-155 and miR-126 as novel biomarkers on the assessment of disease progression and prognosis in adult T-cell leukemia. Cancer Epidemiol 36:560–565CrossRefPubMedGoogle Scholar
  20. Jones CI, Zabolotskaya MV, King AJ et al (2012) Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br J Cancer 107:1987–1996CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jones K, Nourse JP, Keane C et al (2014) Plasma microRNA are disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res 20:253–264CrossRefPubMedGoogle Scholar
  22. Kay NE, Shanafelt TD (2007) Prognostic factors in chronic lymphocytic leukemia. Curr Hematol Malig Rep 2:49–55CrossRefPubMedGoogle Scholar
  23. Kim Y, Cheong JW, Kim YK et al (2014) Serum microRNA-21 as a potential biomarker for response to hypomethylating agents in myelodysplastic syndromes. PLoS ONE 9, e86933CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kubiczkova L, Kryukov F, Slaby O et al (2014) Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica 99:511–518CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kyle RA, Rajkumar SV (2009) Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 23:3–9CrossRefPubMedGoogle Scholar
  26. Landgren O, Kyle RA, Pfeiffer RM et al (2009) Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113:5412–5417CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675CrossRefPubMedGoogle Scholar
  28. Li Q, Liu L, Li W (2014) Identification of circulating microRNAs as biomarkers in diagnosis of hematologic cancers: a meta-analysis. Tumour Biol 35:10467–10478CrossRefPubMedGoogle Scholar
  29. Löwenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341(14):1051–1062CrossRefPubMedGoogle Scholar
  30. Moussay E, Wang K, Cho JH et al (2011) MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci USA 108:6573–6578CrossRefPubMedPubMedCentralGoogle Scholar
  31. Navarro A, Díaz T, Tovar N et al (2015) A serum microRNA signature associated with complete remission and progression after autologous stem-cell transplantation in patients with multiple myeloma. Oncotarget 6:1874–1883CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ohyashiki K, Umezu T, Yoshizawa S et al (2011) Clinical impact of down-regulated plasma miR-92a levels in non-Hodgkin's lymphoma. PLoS ONE 6, e16408CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pfeilstocker M, Karlic H, Nosslinger T et al (2007) Myelodysplastic syndromes, aging, and age: correlations, common mechanisms, and clinical implications. Leuk Lymphoma 48:1900–1909CrossRefPubMedGoogle Scholar
  34. Poiesz BJ, Ruscetti FW, Gazdar AF et al (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77:7415–7419CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pons A, Nomdedeu B, Navarro A et al (2009) Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma 50:1854–1859CrossRefPubMedGoogle Scholar
  36. Qu X, Zhao M, Wu S et al (2014) Circulating microRNA 483-5p as a novel biomarker for diagnosis survival prediction in multiple myeloma. Med Oncol 31:219CrossRefPubMedGoogle Scholar
  37. Rocci A, Hofmeister CC, Geyer S et al (2014) Circulating miRNA markers show promise as new prognosticators for multiple myeloma. Leukemia 28:1922–1926CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sevcikova S, Kubiczkova L, Sedlarikova L et al (2013) Serum miR-29a as a marker of multiple myeloma. Leuk Lymphoma 54:189–191CrossRefPubMedGoogle Scholar
  39. Sokol L, Caceres G, Volinia S et al (2011) Identification of a risk dependent microRNA expression signature in myelodysplastic syndromes. Br J Haematol 153:24–32CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stamatopoulos B, Van Damme M, Crompot E et al (2015) Opposite prognostic significance of cellular and serum circulating microRNA-150 in Chronic Lymphocytic Leukemia patients. Mol Med 21:123–133CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tanaka M, Oikawa K, Takanashi M et al (2009) Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS ONE 4, e5532CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tsang WP, Kwok TT (2008) Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis 13:1215–1222CrossRefPubMedGoogle Scholar
  43. Turchinovich A, Weiz L, Burwinkel B (2012) Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37:460–465CrossRefPubMedGoogle Scholar
  44. Vardiman JW, Thiele J, Arber DA et al (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951CrossRefPubMedGoogle Scholar
  45. Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ward E, DeSantis C, Robbins A et al (2014) Childhood and adolescent cancer statistics (2014). CA Cancer J Clin 64:83–103CrossRefPubMedGoogle Scholar
  47. Xiao C, Srinivasan L, Calado DP et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17- 92 expression in lymphocytes. Nat Immunol 9:405–414CrossRefPubMedPubMedCentralGoogle Scholar
  48. Xie HT, Chu ZX, Wang H (2012) Serum microRNA expression profile as a biomarker in diagnosis and prognosis of acute myeloid leukemia. J Clin Pediatr 30:421–424Google Scholar
  49. Yoshizawa S, Ohyashiki JH, Ohyashiki M et al (2012) Downregulated plasma miR-92a levels have clinical impact on multiple myeloma and related disorders. Blood Cancer J 2, e53CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhi F, Cao X, Xie X et al (2013) Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia. PLoS ONE 8, e56718CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zuo Z, Calin GA, de Paula HM et al (2011) Circulating microRNAs let-7a and miR-16 predict progression-free survival and overall survival in patients with myelodysplastic syndrome. Blood 118:413–415CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zuo Z, Maiti S, Hu S et al (2015) Plasma circulating-microRNA profiles are useful for assessing prognosis in patients with cytogenetically normal myelodysplastic syndromes. Mod Pathol 28:373–382CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Monika Stankova
    • 1
  • Veronika Kubaczkova
    • 1
  • Lenka Sedlarikova
    • 1
  • Sabina Sevcikova
    • 1
    Email author
  1. 1.Babak Myeloma Group, Department of Pathological PhysiologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations