Advertisement

Extracellular microRNAs in Membrane Vesicles and Non-vesicular Carriers

  • Anna M. L. Coenen-StassEmail author
  • Imre Mäger
  • Mathew J. A. Wood
Chapter
Part of the Experientia Supplementum book series (EXS, volume 106)

Abstract

Great excitement has surrounded the finding that small RNAs are stable in various biofluids and carry specific signatures reflecting physiological and pathological states. In this chapter, we briefly describe the impact of this revolutionary discovery and introduce different subclasses of circulating microRNAs based on their mode of transport. Subsequently, we review the current state-of-the art knowledge on microRNA selection for export, secretion and possible uptake mechanisms and their potential function in circulation. Furthermore, we give an overview on the possible use of cell-free microRNAs as biomarkers and as therapeutic targets. Overall, we aim to highlight open questions and address some of the pitfalls of current extracellular RNA research.

Keywords

Extracellular microRNA Extracellular vesicles Intercellular communication Biomarker miRNA-based therapeutics 

References

  1. Ai J, Zhang R, Li Y et al (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391:73–77PubMedCrossRefGoogle Scholar
  2. Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345PubMedCrossRefGoogle Scholar
  3. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asangani IA, Rasheed SAK, Nikolova DA et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136PubMedCrossRefGoogle Scholar
  5. Babin PJ, Gibbons GF (2009) The evolution of plasma cholesterol: direct utility or a “spandrel” of hepatic lipid metabolism? Prog Lipid Res 48:73–91PubMedCrossRefGoogle Scholar
  6. Baietti MF, Zhang Z, Mortier E et al (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14:677–685PubMedCrossRefGoogle Scholar
  7. Barrès C, Blanc L, Bette-Bobillo P et al (2010) Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115:696–705PubMedCrossRefGoogle Scholar
  8. Batagov AO, Kurochkin IV (2013) Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol Direct 8:12PubMedPubMedCentralCrossRefGoogle Scholar
  9. Biancone L, Bruno S, Deregibus MC et al (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27:3037–3042PubMedCrossRefGoogle Scholar
  10. Bobrie A, Colombo M, Raposo G, Théry C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12:1659–1668PubMedCrossRefGoogle Scholar
  11. Brown WV (2007) High-density lipoprotein and transport of cholesterol and triglyceride in blood. J Clin Lipidol 1:7–19PubMedCrossRefGoogle Scholar
  12. Brown BD, Gentner B, Cantore A et al (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25:1457–1467PubMedCrossRefGoogle Scholar
  13. Bruno S, Grange C, Deregibus MC et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067PubMedPubMedCentralCrossRefGoogle Scholar
  14. Camussi G, Deregibus M-C, Bruno S et al (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1:98–110PubMedGoogle Scholar
  15. Cantaluppi V, Gatti S, Medica D et al (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82:412–427PubMedCrossRefGoogle Scholar
  16. Cermelli S, Ruggieri A, Marrero JA et al (2011) Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS ONE 6, e23937PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chaput N, Théry C (2011) Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 33:419–440PubMedCrossRefGoogle Scholar
  18. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006PubMedCrossRefGoogle Scholar
  19. Chen X, Gao C, Li H et al (2010) Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 20:1128–1137PubMedCrossRefGoogle Scholar
  20. Chevillet JR, Kang Q, Ruf IK et al (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA 111:14888–14893PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chim SSC, Shing TKF, Hung ECW et al (2008) Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54:482–490PubMedCrossRefGoogle Scholar
  22. Corsten MF, Dennert R, Jochems S et al (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506PubMedCrossRefGoogle Scholar
  23. De Rosa S, Fichtlscherer S, Lehmann R et al (2011) Transcoronary concentration gradients of circulating microRNAs. Circulation 124:1936–1944PubMedCrossRefGoogle Scholar
  24. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357PubMedCrossRefGoogle Scholar
  25. Etheridge A, Gomes CPC, Pereira RW et al (2013) The complexity, function and applications of RNA in circulation. Front Genet 4:115. doi: 10.3389/fgene.2013.00115 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fabbri M, Paone A, Calore F et al (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 109:E2110–E2116PubMedPubMedCentralCrossRefGoogle Scholar
  27. Feinberg EH, Hunter CP (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301:1545–1547PubMedCrossRefGoogle Scholar
  28. Feng D, Zhao W-L, Ye YY et al (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic Cph Den 11:675–687CrossRefGoogle Scholar
  29. Gao W, He HW, Wang ZM et al (2012) Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis 11:55PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gnecchi M, He H, Noiseux N et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669PubMedCrossRefGoogle Scholar
  31. Guduric-Fuchs J, O’Connor A, Camp B et al (2012) Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 13:357PubMedPubMedCentralCrossRefGoogle Scholar
  32. György B, Hung ME, Breakefield XO et al (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 55:439–464PubMedCrossRefGoogle Scholar
  33. Hanke M, Hoefig K, Merz H et al (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28:655–661PubMedCrossRefGoogle Scholar
  34. Hergenreider E, Heydt S, Tréguer K et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256PubMedCrossRefGoogle Scholar
  35. Hunter MP, Ismail N, Zhang X et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694PubMedPubMedCentralCrossRefGoogle Scholar
  36. Janas T, Janas T, Yarus M (2006) Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res 34:2128–2136PubMedPubMedCentralCrossRefGoogle Scholar
  37. Janas T, Janas MM, Sapoń K et al (2015) Mechanisms of RNA loading into exosomes. FEBS Lett 589:1391–1398PubMedCrossRefGoogle Scholar
  38. Jia S, Zocco D, Samuels ML et al (2014) Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev Mol Diagn 14:307–321PubMedCrossRefGoogle Scholar
  39. Jung HJ, Suh Y (2014) Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics 41:465–472PubMedPubMedCentralCrossRefGoogle Scholar
  40. Katsuda T, Kosaka N, Ochiya T (2014) The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 14:412–425PubMedCrossRefGoogle Scholar
  41. Kim SI, Shin D, Choi TH et al (2007) Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther 15:1145–1152PubMedCrossRefGoogle Scholar
  42. Kogure T, Lin W-L, Yan IK et al (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54:1237–1248PubMedPubMedCentralCrossRefGoogle Scholar
  43. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV et al (2014) Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 8:1649–1658PubMedCrossRefGoogle Scholar
  44. Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kosaka N, Iguchi H, Yoshioka Y et al (2012) Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem 287:1397–1405PubMedCrossRefGoogle Scholar
  46. Kosaka N, Yoshioka Y, Hagiwara K et al (2013) Trash or treasure: extracellular microRNAs and cell-to-cell communication. Front Genet 4:173. doi: 10.3389/fgene.2013.00173 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lai RC, Arslan F, Lee MM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222PubMedCrossRefGoogle Scholar
  48. Lakhal S, Wood MJA (2011) Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays 33:737–741PubMedCrossRefGoogle Scholar
  49. Laterza OF, Lim L, Garrett-Engele PW et al (2009) Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983PubMedCrossRefGoogle Scholar
  50. Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675PubMedCrossRefGoogle Scholar
  51. Lee Y, El Andaloussi S, Wood MJA (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21:R125–R134PubMedCrossRefGoogle Scholar
  52. Lehmann SM, Krüger C, Park B et al (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835PubMedCrossRefGoogle Scholar
  53. Lemoinne S, Thabut D, Housset C et al (2014) The emerging roles of microvesicles in liver diseases. Nat Rev Gastroenterol Hepatol 11:350–361PubMedCrossRefGoogle Scholar
  54. Loyer X, Vion A-C, Tedgui A et al (2014) Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res 114:345–353PubMedCrossRefGoogle Scholar
  55. Manavbasi Y, Süleymanoglu E (2007) Nucleic acid-phospholipid recognition: Fourier transform infrared spectrometric characterization of ternary phospholipid-inorganic cation-DNA complex and its relevance to chemicopharmaceutical design of nanometric liposome based gene delivery formulations. Arch Pharm Res 30:1027–1040PubMedCrossRefGoogle Scholar
  56. Marleau AM, Chen C-S, Joyce JA et al (2012) Exosome removal as a therapeutic adjuvant in cancer. J Transl Med 10:134PubMedPubMedCentralCrossRefGoogle Scholar
  57. Meng F, Henson R, Wehbe-Janek H et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mi S, Zhang J, Zhang W, Huang RS (2013) Circulating microRNAs as biomarkers for inflammatory diseases. MicroRNA 2:63–71PubMedCrossRefGoogle Scholar
  59. Michael A, Bajracharya SD, Yuen PST et al (2010) Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 16:34–38PubMedCrossRefGoogle Scholar
  60. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. doi: 10.1038/ncomms1285 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mizuno H, Nakamura A, Aoki Y et al (2011) Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS ONE 6, e18388PubMedPubMedCentralCrossRefGoogle Scholar
  63. Moldovan L, Batte KE, Trgovcich J et al (2014) Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 18:371–390PubMedPubMedCentralCrossRefGoogle Scholar
  64. Montecalvo A, Larregina AT, Shufesky WJ et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766PubMedPubMedCentralCrossRefGoogle Scholar
  65. Morelli AE, Larregina AT, Shufesky WJ et al (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104:3257–3266PubMedCrossRefGoogle Scholar
  66. Moussay E, Wang K, Cho J-H et al (2011) MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci USA 108:6573–6578PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mulcahy LA, Pink RC, Carter DRF (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 4:3. doi: 10.3402/jev.v3.24641 Google Scholar
  68. Nabhan JF, Hu R, Oh RS et al (2012) Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA 109:4146–4151PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nakayama T, Butler JS, Sehgal A et al (2012) Harnessing a physiologic mechanism for siRNA delivery with mimetic lipoprotein particles. Mol Ther 20:1582–1589PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nanbo A, Kawanishi E, Yoshida R et al (2013) Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol 87:10334–10347PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nishida-Aoki N, Ochiya T (2015) Interactions between cancer cells and normal cells via miRNAs in extracellular vesicles. Cell Mol Life Sci 72:1849–1861PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nordin JZ, Lee Y, Vader P et al (2015) Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 11:879–883PubMedCrossRefGoogle Scholar
  73. Ohshima K, Inoue K, Fujiwara A et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE 5, e13247PubMedPubMedCentralCrossRefGoogle Scholar
  74. Park NJ, Zhou H, Elashoff D et al (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15:5473–5477PubMedPubMedCentralCrossRefGoogle Scholar
  75. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 107:6328–6333PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CMP (2013) Delivering the promise of miRNA cancer therapeutics. Drug Discov Today 18:282–289PubMedCrossRefGoogle Scholar
  77. Pigati L, Yaddanapudi SCS, Iyengar R et al (2010) Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS ONE 5, e13515PubMedPubMedCentralCrossRefGoogle Scholar
  78. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452PubMedCrossRefGoogle Scholar
  79. Rak J, Guha A (2012) Extracellular vesicles--vehicles that spread cancer genes. BioEssays 34:489–497PubMedCrossRefGoogle Scholar
  80. Rayner KJ, Hennessy EJ (2013) Extracellular communication via microRNA: lipid particles have a new message. J Lipid Res 54:1174–1181PubMedPubMedCentralCrossRefGoogle Scholar
  81. Roberts TC, Godfrey C, McClorey G et al (2013) Extracellular microRNAs are dynamic non-vesicular biomarkers of muscle turnover. Nucleic Acids Res 41:9500–9513PubMedPubMedCentralCrossRefGoogle Scholar
  82. Roberts TC, Coenen-Stass AML, Wood MJA (2014) Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS ONE 9, e89237PubMedPubMedCentralCrossRefGoogle Scholar
  83. Roth P, Wischhusen J, Happold C et al (2011) A specific miRNA signature in the peripheral blood of glioblastoma patients. J Neurochem 118:449–457PubMedCrossRefGoogle Scholar
  84. Semenov DV, Baryakin DN, Brenner EV et al (2012) Unbiased approach to profile the variety of small non-coding RNA of human blood plasma with massively parallel sequencing technology. Expert Opin Biol Ther 12(Suppl 1):S43–S551PubMedCrossRefGoogle Scholar
  85. Shih JD, Hunter CP (2011) SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17:1057–1065PubMedPubMedCentralCrossRefGoogle Scholar
  86. Skog J, Würdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476PubMedPubMedCentralCrossRefGoogle Scholar
  87. Squadrito ML, Baer C, Burdet F et al (2014) Endogenous RNAs modulate MicroRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8:1432–1446PubMedCrossRefGoogle Scholar
  88. Steinman RM, Brodie SE, Cohn ZA (1976) Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol 68:665–687PubMedCrossRefGoogle Scholar
  89. Süleymanoglu E (2006) Phospholipid-nucleic acid recognition: developing an immobilized liposome chromatography for DNA separation and analysis. PDA J Pharm Sci Technol 60:232–239PubMedGoogle Scholar
  90. Svensson KJ, Christianson HC, Wittrup A et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288:17713–17724PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sverdlov ED (2012) Amedeo Avogadro’s cry: what is 1 μg of exosomes? BioEssays 34:873–875PubMedCrossRefGoogle Scholar
  92. Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedCrossRefGoogle Scholar
  93. Tian T, Wang Y, Wang H et al (2010) Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 111:488–496PubMedCrossRefGoogle Scholar
  94. Tian T, Zhu Y-L, Hu F-H et al (2013) Dynamics of exosome internalization and trafficking. J Cell Physiol 228:1487–1495PubMedCrossRefGoogle Scholar
  95. Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247PubMedCrossRefGoogle Scholar
  96. Turchinovich A, Burwinkel B (2012) Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 9:1066–1075PubMedPubMedCentralCrossRefGoogle Scholar
  97. Turchinovich A, Weiz L, Langheinz A et al (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233PubMedPubMedCentralCrossRefGoogle Scholar
  98. Turchinovich A, Weiz L, Burwinkel B (2012) Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37:460–465PubMedCrossRefGoogle Scholar
  99. Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedCrossRefGoogle Scholar
  100. Van den Boorn JG, Dassler J, Coch C et al (2013) Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev 65:331–335PubMedCrossRefGoogle Scholar
  101. Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433PubMedPubMedCentralCrossRefGoogle Scholar
  102. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980. doi: 10.1038/ncomms3980 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wagner J, Riwanto M, Besler C et al (2013) Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol 33:1392–1400PubMedCrossRefGoogle Scholar
  104. Wahlgren J, De L, Karlson T, Brisslert M et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40, e130PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38:7248–7259PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wang K, Li H, Yuan Y et al (2012) The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS ONE 7, e51009PubMedPubMedCentralCrossRefGoogle Scholar
  107. Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741PubMedPubMedCentralCrossRefGoogle Scholar
  108. Williams Z, Ben-Dov IZ, Elias R et al (2013) Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci 110:4255–4260PubMedPubMedCentralCrossRefGoogle Scholar
  109. Witwer KW (2015) Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem 61:56–63PubMedCrossRefGoogle Scholar
  110. Wolfrum C, Shi S, Jayaprakash KN et al (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25:1149–1157PubMedCrossRefGoogle Scholar
  111. Xin H, Li Y, Buller B et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30:1556–1564PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yang M, Chen J, Su F et al (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117PubMedPubMedCentralCrossRefGoogle Scholar
  113. Yang J-S, Maurin T, Lai EC (2012) Functional parameters of Dicer-independent microRNA biogenesis. RNA 18:945–957PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yoo B-C, Kragler F, Varkonyi-Gasic E et al (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yu B, Mao Y, Bai L-Y et al (2013) Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocyic leukemia. Blood 121:136–147PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zaharieva IT, Calissano M, Scoto M et al (2013) Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular dystrophy. PLoS ONE 8, e80263PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zampetaki A, Kiechl S, Drozdov I et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817PubMedCrossRefGoogle Scholar
  118. Zen K, Zhang C-Y (2012) Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 32:326–348PubMedCrossRefGoogle Scholar
  119. Zernecke A, Bidzhekov K, Noels H et al (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2:ra81PubMedCrossRefGoogle Scholar
  120. Zhang Y, Liu D, Chen X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144PubMedCrossRefGoogle Scholar
  121. Zhang L, Hou D, Chen X et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anna M. L. Coenen-Stass
    • 1
    Email author
  • Imre Mäger
    • 1
    • 2
  • Mathew J. A. Wood
    • 1
  1. 1.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
  2. 2.Institute of TechnologyUniversity of TartuTartuEstonia

Personalised recommendations