Advertisement

Are Circulating microRNAs Involved in Tumor Surveillance?

  • Ivan Igaz
  • Peter IgazEmail author
Chapter
Part of the Experientia Supplementum book series (EXS, volume 106)

Abstract

By studying literature data and having performed an in silico analysis, the circulating microRNA expression profiles of healthy individuals appear to show an abundance of microRNAs with predominant tumor suppressor activity. We hypothesize that circulating tumor suppressor microRNAs might constitute a sort of continuous tumor surveillance, whereby circulating microRNAs delivering gene expression modulating epigenetic information might halt cell transformation and tumorigenesis. This mechanism might complement the well-known cancer immune surveillance. A further hypothesis is also discussed, supposing that the tissue specific action of microRNAs might represent a putative defense mechanism against the potential tumor-promoting actions of secreted miRNA.

Keywords

Tumor Circulating microRNA Healthy Surveillance 

References

  1. Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345CrossRefPubMedGoogle Scholar
  2. Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17:215–220CrossRefPubMedGoogle Scholar
  3. Baier SR, Nguyen C, Xie F et al (2014) MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 144:1495–1500CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bitarte N, Bandres E, Boni V et al (2011) MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells 29:1661–1671CrossRefPubMedGoogle Scholar
  5. Boyerinas B, Park SM, Hau A et al (2010) The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 17:F19–F36CrossRefPubMedGoogle Scholar
  6. Camussi G, Deregibus MC, Bruno S et al (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1:98–110PubMedGoogle Scholar
  7. Cao J, Cai J, Huang D et al (2013) miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. Oncol Rep 30:701–706PubMedGoogle Scholar
  8. Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. New Engl J Med 353:1768–1771CrossRefPubMedGoogle Scholar
  9. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006CrossRefPubMedGoogle Scholar
  10. Chen G, Wang J, Cui Q (2013) Could circulating miRNAs contribute to cancer therapy? Trends Mol Med 19:71–73CrossRefPubMedGoogle Scholar
  11. Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998CrossRefPubMedGoogle Scholar
  12. Etheridge A, Gomes CP, Pereira RW et al (2013) The complexity, function and applications of RNA in circulation. Front Genet 4:115. doi: 10.3389/fgene.2013.00115 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Falcone G, Felsani A, D'Agnano I (2015) Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res 34:32CrossRefPubMedPubMedCentralGoogle Scholar
  14. Formosa A, Markert EK, Lena AM et al (2014) MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 33:5173–5182CrossRefPubMedGoogle Scholar
  15. Gits CM, van Kuijk PF, Jonkers MB et al (2013) MicroRNA expression profiles distinguish liposarcoma subtypes and implicate miR-145 and miR-451 as tumor suppressors. Int J Cancer 135:348–361CrossRefGoogle Scholar
  16. Glasgow SM, Laug D, Brawley VS et al (2013) The miR-223/nuclear factor I-A axis regulates glial precursor proliferation and tumorigenesis in the CNS. J Neurosci 33:13560–13568CrossRefPubMedPubMedCentralGoogle Scholar
  17. Godlewski J, Bronisz A, Nowicki MO et al (2010) microRNA-451: a conditional switch controlling glioma cell proliferation and migration. Cell Cycle 9:2742–2748CrossRefPubMedGoogle Scholar
  18. Haneklaus M, Gerlic M, O'Neill LA et al (2013) miR-223: infection, inflammation and cancer. J Intern Med 274:215–226CrossRefPubMedGoogle Scholar
  19. Hong L, Han Y, Zhang Y et al (2013) MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Expert Opin Ther Targets 17:1073–1080CrossRefPubMedGoogle Scholar
  20. Hunter MP, Ismail N, Zhang X et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694CrossRefPubMedPubMedCentralGoogle Scholar
  21. Igaz I, Igaz P (2014) Tumor surveillance by circulating microRNAs: a hypothesis. Cell Mol Life Sci 71:4081–4087CrossRefPubMedPubMedCentralGoogle Scholar
  22. Igaz I, Igaz P (2015) Why is microRNA action tissue specific? A putative defense mechanism against growth disorders, tumor development or progression mediated by circulating microRNA? Med Hypotheses 85:530–533Google Scholar
  23. Katsuda T, Kosaka N, Ochiya T (2014) The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 14:412–425CrossRefPubMedGoogle Scholar
  24. Li H, Xie S, Liu M et al (2014) The clinical significance of downregulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis. Int J Oncol 45:197–208PubMedGoogle Scholar
  25. Liu D, Liu C, Wang X et al (2014) MicroRNA-451 suppresses tumor cell growth by down-regulating IL6R gene expression. Cancer Epidemiol 38:85–92CrossRefPubMedGoogle Scholar
  26. Melo SA, Sugimoto H, O'Connell JT et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518CrossRefPubMedPubMedCentralGoogle Scholar
  28. Namlos HM, Meza-Zepeda LA, Baroy T et al (2012) Modulation of the osteosarcoma expression phenotype by microRNAs. PLoS ONE 7, e48086CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nian W, Ao X, Wu Y et al (2013) miR-223 functions as a potent tumor suppressor of the Lewis lung carcinoma cell line by targeting insulin-like growth factor-1 receptor and cyclin-dependent kinase 2. Oncol Lett 6(2):359–366PubMedPubMedCentralGoogle Scholar
  30. Ohshima K, Inoue K, Fujiwara A et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE 5, e13247CrossRefPubMedPubMedCentralGoogle Scholar
  31. Osada H, Takahashi T (2011) let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 102:9–17CrossRefPubMedGoogle Scholar
  32. Palanichamy JK, Rao DS (2014) miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet 5:54. doi: 10.3389/fgene.2014.00054 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rayner KJ, Hennessy EJ (2013) Extracellular communication via microRNA: lipid particles have a new message. J Lipid Res 54:1174–1181CrossRefPubMedPubMedCentralGoogle Scholar
  34. Redis RS, Calin S, Yang Y et al (2012) Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol Ther 136:169–174CrossRefPubMedGoogle Scholar
  35. Reid G, Kirschner MB, van Zandwijk N (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80:193–208CrossRefPubMedGoogle Scholar
  36. Snow JW, Hale AE, Isaacs SK et al (2013) Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol 10:1107–1116CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sun Z, Zhang Z, Liu Z et al (2014) MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol 31:982CrossRefPubMedGoogle Scholar
  38. Szabo DR, Luconi M, Szabo PM et al (2014) Analysis of circulating microRNAs in adrenocortical tumors. Lab Invest 94:331–339CrossRefPubMedGoogle Scholar
  39. Tahiri A, Leivonen SK, Luders T et al (2014) Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors. Carcinogenesis 35:76–85CrossRefPubMedGoogle Scholar
  40. Takahashi K, Yokota S, Tatsumi N et al (2013) Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol Appl Pharmacol 272:154–160CrossRefPubMedGoogle Scholar
  41. Tanaka M, Oikawa K, Takanashi M et al (2009) Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS ONE 4, e5532CrossRefPubMedPubMedCentralGoogle Scholar
  42. Turchinovich A, Burwinkel B (2012) Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 9:1066–1075CrossRefPubMedPubMedCentralGoogle Scholar
  43. Turchinovich A, Samatov TR, Tonevitsky AG et al (2013) Circulating miRNAs: cell-cell communication function? Front Genet 4:119. doi: 10.3389/fgene.2013.00119 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wagner J, Riwanto M, Besler C et al (2013) Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol 33:1392–1400CrossRefPubMedGoogle Scholar
  46. Wang Y, Zhao W, Fu Q (2013) miR-335 suppresses migration and invasion by targeting ROCK1 in osteosarcoma cells. Mol Cell Biochem 384:105–111CrossRefPubMedGoogle Scholar
  47. Wang J, Tian X, Han R et al (2014) Downregulation of miR-486-5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene 33:1181–1189CrossRefPubMedGoogle Scholar
  48. Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741CrossRefPubMedPubMedCentralGoogle Scholar
  49. Williams Z, Ben-Dov IZ, Elias R et al (2013) Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci USA 110:4255–4260CrossRefPubMedPubMedCentralGoogle Scholar
  50. Witwer KW, Hirschi KD (2014) Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. BioEssays 36:394–406CrossRefPubMedPubMedCentralGoogle Scholar
  51. Xu H, Mei Q, Shi L et al (2013) Tumor-suppressing effects of miR451 in human osteosarcoma. Cell Biochem Biophys 69:163–168CrossRefGoogle Scholar
  52. Zhang L, Hou D, Chen X et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126CrossRefPubMedGoogle Scholar
  53. Zhao LY, Yao Y, Han J et al (2014) miR-638 suppresses cell proliferation in gastric cancer by targeting Sp2. Dig Dis Sci 59:1743–1753CrossRefPubMedGoogle Scholar
  54. Zhu DX, Zhu W, Fang C et al (2012) miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 33:1294–1301CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of GastroenterologySzt Imre Teaching Hospital BudapestBudapestHungary
  2. 2.2nd Department of MedicineSemmelweis UniversityBudapestHungary

Personalised recommendations