Circulating microRNAs as Hormones: Intercellular and Inter-organ Conveyors of Epigenetic Information?

  • Yusuke Yoshioka
  • Takeshi Katsuda
  • Takahiro OchiyaEmail author
Part of the Experientia Supplementum book series (EXS, volume 106)


The discovery of microRNAs (miRNAs) has created a paradigm shift not only in the traditional central dogma of molecular biology but also in the research of a variety of human diseases. Fourteen years after the discovery of miRNAs, there was another revolutionary finding: cells can shuttle miRNAs between each other via small lipid bilayer vesicles called exosomes. This exosome-mediated horizontal transfer of genetically encoded messages is now recognized as a means of intercellular communication. This chapter reviews the concept that miRNAs can function as hormones conveying epigenetic information.


Exosome Extracellular vesicles miRNA Circulating miRNAs Cell-to-cell communication 



This work was supported in part by a Grant-in-Aid for the Japan Science and Technology Agency (JST) through the Center of Innovation Program from MEXT and JST; a Grant-in-Aid for the Japan Agency for Medical Research and Development (A-MED); a Grant-in-Aid for Basic Science and Platform Technology Program for Innovative Biological Medicine; a Grant-in-Aid for a research program of the Project for Development of Innovative Research on Cancer Therapeutics (P-Direct); and a Grant-in-Aid for Scientific Research on Innovative Areas (functional machinery for noncoding RNAs) from the Japanese Ministry of Education, Culture, Sports, Science and Technology.


  1. Arora S, Rana R, Chhabra A et al (2013) miRNA-transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genomics 288:77–87CrossRefPubMedGoogle Scholar
  2. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bang C, Batkai S, Dangwal S et al (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124:2136–2146CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bovy N, Blomme B, Freres P et al (2015) Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget 6:10253–10266CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bukoreshtliev NV, Haase K, Pelling AE (2013) Mechanical cues in cellular signalling and communication. Cell Tissue Res 352:77–94CrossRefPubMedGoogle Scholar
  6. Chen CZ, Li L, Lodish HF et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86CrossRefPubMedGoogle Scholar
  7. Chen WX, Liu XM, Lv MM et al (2014) Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS ONE 9, e95240CrossRefPubMedPubMedCentralGoogle Scholar
  8. Clape C, Fritz V, Henriquet C et al (2009) miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS ONE 4:e7542CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17:313–319CrossRefPubMedGoogle Scholar
  10. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807CrossRefPubMedGoogle Scholar
  12. Fasanaro P, D’Alessandra Y, Di Stefano V et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fong MY, Zhou W, Liu L, Alontaga AY et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17:183–194CrossRefPubMedPubMedCentralGoogle Scholar
  14. Galand P, Ledoux L (1966) Uptake of exogenous ribonucleic acid by ascites tumor cells. II. Relations between RNA uptake and the cellular metabolism. Exp Cell Res 43:391–397CrossRefPubMedGoogle Scholar
  15. Gandellini P, Folini M, Longoni N et al (2009) miR-205 exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res 69:2287–2295CrossRefPubMedGoogle Scholar
  16. Gurtan AM, Sharp PA (2013) The role of miRNAs in regulating gene expression networks. J Mol Biol 425:3582–3600CrossRefPubMedPubMedCentralGoogle Scholar
  17. Howard CM, Baudino TA (2014) Dynamic cell-cell and cell-ECM interactions in the heart. J Mol Cell Cardiol 70:19–26CrossRefPubMedGoogle Scholar
  18. Jahr S, Hentze H, Englisch S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665PubMedGoogle Scholar
  19. Johnstone RM, Adam M, Hammond JR et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420PubMedGoogle Scholar
  20. Kamm RC, Smith AG (1972) Nucleic acid concentrations in normal human plasma. Clin Chem 18:519–522PubMedGoogle Scholar
  21. Kolodny GM (1971) Evidence for transfer of macromolecular RNA between mammalian cells in culture. Exp Cell Res 65:313–324CrossRefPubMedGoogle Scholar
  22. Kosaka N, Iguchi H, Ochiya T (2010a) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101:2087–2092CrossRefPubMedGoogle Scholar
  23. Kosaka N, Iguchi H, Yoshioka Y et al (2010b) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kosaka N, Izumi H, Sekine K et al (2010c) microRNA as a new immune-regulatory agent in breast milk. Silence 1(1):7CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kosaka N, Iguchi H, Yoshioka Y et al (2012) Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem 287:1397–1405CrossRefPubMedGoogle Scholar
  26. Kosaka N, Iguchi H, Hagiwara K et al (2013) Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288:10849–10859CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kurtz JM, Spitalier JM, Amalric R (1983) Late breast recurrence after lumpectomy and irradiation. Int J Radiat Oncol Biol Phys 9:1191–1194CrossRefPubMedGoogle Scholar
  28. Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675CrossRefPubMedGoogle Scholar
  29. Le MT, Hamar P, Guo C et al (2014) miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124:5109–5128CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li QJ, Chau J, Ebert PJ et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161CrossRefPubMedGoogle Scholar
  31. Lichtenstein AV, Melkonyan HS, Tomei LD et al (2001) Circulating nucleic acids and apoptosis. Ann N Y Acad Sci 945:239–249CrossRefPubMedGoogle Scholar
  32. Lin SL, Chiang A, Chang D et al (2008a) Loss of mir-146a function in hormone-refractory prostate cancer. RNA 14:417–424CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lin YC, Kuo MW, Yu J et al (2008b) c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development. Mol Biol Evol 25:2189–2198CrossRefPubMedGoogle Scholar
  34. Mandel P, Metais P (1948) Les acides nucleiques du plasma sanguin chez l'homme. C R Seances Soc Biol Fil 142:241–243PubMedGoogle Scholar
  35. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282CrossRefPubMedPubMedCentralGoogle Scholar
  36. Munch EM, Harris RA, Mohammad M et al (2013) Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk. PLoS ONE 8(2), e50564CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ono M, Kosaka N, Tominaga N et al (2014) Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 7(332):ra63CrossRefPubMedGoogle Scholar
  38. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–978CrossRefPubMedGoogle Scholar
  39. Papapetrou EP, Kovalovsky D, Beloeil L et al (2009) Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras. J Clin Invest 119:157–168PubMedGoogle Scholar
  40. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 107:6328–6333CrossRefPubMedPubMedCentralGoogle Scholar
  41. Peng X, Guo W, Liu T et al (2011) Identification of miRs-143 and −145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS ONE 6, e20341CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pfeffer S, Zavolan M, Grasser FA et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736CrossRefPubMedGoogle Scholar
  43. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383CrossRefPubMedPubMedCentralGoogle Scholar
  44. Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172CrossRefPubMedGoogle Scholar
  45. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Phys Rev 91:827–887Google Scholar
  46. Shackleton M, Quintana E, Fearon ER et al (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829CrossRefPubMedGoogle Scholar
  47. Sozen B, Can A, Demir N (2014) Cell fate regulation during preimplantation development: a view of adhesion-linked molecular interactions. Dev Biol 395:73–83CrossRefPubMedGoogle Scholar
  48. Stroun M, Anker P, Beljanski M et al (1978) Presence of RNA in the nucleoprotein complex spontaneously released by human lymphocytes and frog auricles in culture. Cancer Res 38:3546–3554PubMedGoogle Scholar
  49. Tadokoro H, Umezu T, Ohyashiki K et al (2013) Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem 288:34343–34351CrossRefPubMedPubMedCentralGoogle Scholar
  50. Takeshita F, Patrawala L, Osaki M et al (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18:181–187CrossRefPubMedGoogle Scholar
  51. Tavazoie SF, Alarcon C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152CrossRefPubMedPubMedCentralGoogle Scholar
  52. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21CrossRefPubMedGoogle Scholar
  53. Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3:15CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tominaga N, Kosaka N, Ono M et al (2015) Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat Commun 6:6716CrossRefPubMedPubMedCentralGoogle Scholar
  55. Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRefPubMedGoogle Scholar
  56. Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vigorito E, Perks KL, Abreu-Goodger C et al (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27:847–859CrossRefPubMedPubMedCentralGoogle Scholar
  58. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wagner J, Riwanto M, Besler C et al (2013) Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol 33:1392–1400CrossRefPubMedGoogle Scholar
  60. Xiao C, Calado DP, Galler G et al (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146–159CrossRefPubMedGoogle Scholar
  61. Xiao F, Zhang W, Chen L et al (2013) MicroRNA-503 inhibits the G1/S transition by downregulating cyclin D3 and E2F3 in hepatocellular carcinoma. J Transl Med 11:195CrossRefPubMedPubMedCentralGoogle Scholar
  62. Xu B, Niu X, Zhang X et al (2011) miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 350:207–213CrossRefPubMedGoogle Scholar
  63. Yamada N, Nakagawa Y, Tsujimura N et al (2013) Role of intracellular and extracellular microRNA-92a in colorectal cancer. Transl Oncol 6:482–492CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zernecke A, Bidzhekov K, Noels H et al (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2(100):ra81CrossRefPubMedGoogle Scholar
  65. Zhang Y, Liu D, Chen X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144CrossRefPubMedGoogle Scholar
  66. Zhang J, Li S, Li L et al (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhou W, Fong MY, Min Y et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25:501–515CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yusuke Yoshioka
    • 1
  • Takeshi Katsuda
    • 1
  • Takahiro Ochiya
    • 1
    Email author
  1. 1.Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan

Personalised recommendations