Advertisement

Circulating microRNAs in Diabetes Progression: Discovery, Validation, and Research Translation

  • Ryan J. Farr
  • Mugdha V. Joglekar
  • Anandwardhan A. HardikarEmail author
Chapter
Part of the Experientia Supplementum book series (EXS, volume 106)

Abstract

Diabetes, in all of its forms, is a disease state that demonstrates wide ranging pathological effects throughout the body. Until now, the only method of diagnosing and monitoring the progression of diabetes was through the measurement of blood glucose. Unfortunately, beta cell dysfunction initiates well before the clinical onset of diabetes, and so the development of an effective biomarker signature is of paramount importance to predict and monitor the progression of this disease. MicroRNAs (miRNAs/miRs) are small (18–22 nucleotide) noncoding (nc)RNAs that post-transcriptionally regulate endogenous gene expression by targeted inhibition or degradation of messenger (m)RNA. Recently, miRNAs have shown great promise as biomarkers as some exhibit differential expression in multiple disease states, including type 1 and type 2 diabetes (T1D/T2D). Furthermore, miRNAs are quite stable in circulation, resistant to freeze-thaw and pH-mediated degradation, and are relatively easy to detect using quantitative (q)PCR. Here, we discuss microRNAs that may form a diabetes biomarker signature. To identify these transcripts we outline miRNAs that play a central role in pancreas development and diabetes, as well as previously identified miRNAs with differential expression in individuals with T1D and T2D. Validation and refinement of a miRNA biomarker signature for diabetes would allow identification and intervention of individuals at risk of this disease, as well as stratification and monitoring of patients with established diabetes.

Keywords

Diabetes MicroRNA Biomarkers Circulation Beta cells 

Notes

The authors apologize for being unable to reference other articles due to space constraints.

References

  1. Alejandro EU, Gregg B, Wallen T et al (2014) Maternal diet-induced microRNAs and mTOR underlie beta cell dysfunction in offspring. J Clin Invest 124:4395–4410PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alizadeh E, Akbarzadeh A, Eslaminejad MB et al (2015) Up regulation of liver-enriched transcription factors HNF4a and HNF6 and liver-specific microRNA (miR-122) by inhibition of let-7b in mesenchymal stem cells. Chem Biol Drug Design 85:268–279CrossRefGoogle Scholar
  3. Avnit-Sagi T, Kantorovich L, Kredo-Russo S et al (2009) The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS ONE 4(4), e5033PubMedPubMedCentralCrossRefGoogle Scholar
  4. Avnit-Sagi T, Vana T, Walker MD (2012) Transcriptional mechanisms controlling miR-375 gene expression in the pancreas. Exp Diab Res 2012:891216CrossRefGoogle Scholar
  5. Balasubramanyam M, Aravind S, Gokulakrishnan K et al (2011) Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 351:197–205PubMedCrossRefGoogle Scholar
  6. Baroukh N, Ravier MA, Loder MK et al (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588PubMedCrossRefGoogle Scholar
  7. Bernstein E, Kim SY, Carmell MA et al (2003) Dicer is essential for mouse development. Nat Genet 35:215–217PubMedCrossRefGoogle Scholar
  8. Bravo-Egana V, Rosero S, Molano RD et al (2008) Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun 366:922–926PubMedCrossRefGoogle Scholar
  9. Corral-Fernandez NE, Salgado-Bustamante M, Martinez-Leija ME et al (2013) Dysregulated miR-155 expression in peripheral blood mononuclear cells from patients with type 2 diabetes. Exp Clin Endocrinol Diabetes 121:347–353PubMedCrossRefGoogle Scholar
  10. Correa-Medina M, Bravo-Egana V, Rosero S et al (2009) MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 9:193–199PubMedCrossRefGoogle Scholar
  11. De Vas MG, Kopp JL, Heliot C et al (2015) Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors. Development 142:871–882PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dong PD, Provost E, Leach SD et al (2008) Graded levels of Ptf1a differentially regulate endocrine and exocrine fates in the developing pancreas. Genes Dev 22:1445–1450PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dumortier O, Hinault C, Gautier N et al (2014) Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes 63:3416–3427PubMedCrossRefGoogle Scholar
  14. Dusing MR, Maier EA, Aronow BJ et al (2010) Onecut-2 knockout mice fail to thrive during early postnatal period and have altered patterns of gene expression in small intestine. Physiol Genomics 42:115–125PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ejarque M, Cervantes S, Pujadas G, Tutusaus A, Sanchez L, Gasa R (2013) Neurogenin3 cooperates with Foxa2 to autoactivate its own expression. J Biol Chem 288:11705–11717PubMedPubMedCentralCrossRefGoogle Scholar
  16. El Ouaamari A, Baroukh N, Martens GA et al (2008) miR-375 targets 3’-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57:2708–2717PubMedPubMedCentralCrossRefGoogle Scholar
  17. Elghazi L, Bernal-Mizrachi E (2009) Akt and PTEN: beta-cell mass and pancreas plasticity. Trends Endocrinol Metab 20:243–251PubMedPubMedCentralCrossRefGoogle Scholar
  18. Erener S, Mojibian M, Fox JK et al (2013) Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology 154:603–608PubMedCrossRefGoogle Scholar
  19. Farr RJ, Joglekar MV, Taylor CJ et al (2013a) Circulating non-coding RNAs as biomarkers of beta cell death in diabetes. Pediatr Endocrinol Rev 11:14–20PubMedGoogle Scholar
  20. Farr RJ, Taylor CJ, Satoor SN et al (2013b) From cradle to the grave: tissue-specific microRNA signatures in detecting clinical progression of diabetes. Non-coding RNA Endocrinol 1:16–27Google Scholar
  21. Gosmain Y, Avril I, Mamin A et al (2007) Pax-6 and c-Maf functionally interact with the alpha-cell-specific DNA element G1 in vivo to promote glucagon gene expression. J Biol Chem 282:35024–35034PubMedCrossRefGoogle Scholar
  22. Gosmain Y, Cheyssac C, Heddad Masson M et al (2011) Glucagon gene expression in the endocrine pancreas: the role of the transcription factor Pax6 in alpha-cell differentiation, glucagon biosynthesis and secretion. Diabetes Obes Metab 13(Suppl 1):31–38PubMedCrossRefGoogle Scholar
  23. Gosmain Y, Katz LS, Masson MH et al (2012) Pax6 is crucial for beta-cell function, insulin biosynthesis, and glucose-induced insulin secretion. Mol Endocrinol 26:696–709PubMedPubMedCentralCrossRefGoogle Scholar
  24. Gradwohl G, Dierich A, LeMeur M et al (2000) neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97:1607–1611PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–2457PubMedGoogle Scholar
  26. Gu C, Stein GH, Pan N et al (2010) Pancreatic beta cells require NeuroD to achieve and maintain functional maturity. Cell Metab 11:298–310PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hang Y, Stein R (2011) MafA and MafB activity in pancreatic beta cells. Trends Endocrinol Metab 22:364–373PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hardikar AA, Karandikar MS, Bhonde RR (1999) Effect of partial pancreatectomy on diabetic status in BALB/c mice. J Endocrinol 162:189–195PubMedCrossRefGoogle Scholar
  29. Hardikar AA, Satoor SN, Karandikar MS et al (2015) Multigenerational under nutrition increases susceptibility to obesity and diabetes that is not reversed after dietary recuperation. Cell Metab. doi: 10.1016/j.cmet.2015.06.008 [Epub ahead of print]PubMedGoogle Scholar
  30. Hashimoto N, Kido Y, Uchida T et al (2006) Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet 38:589–593PubMedCrossRefGoogle Scholar
  31. Herrera PL, Huarte J, Sanvito F et al (1991) Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development 113:1257–1265PubMedGoogle Scholar
  32. Hirajima S, Komatsu S, Ichikawa D et al (2013) Clinical impact of circulating miR-18a in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer 108:1822–1829PubMedPubMedCentralCrossRefGoogle Scholar
  33. Horikawa Y, Iwasaki N, Hara M et al (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17:384–385PubMedCrossRefGoogle Scholar
  34. Huang HP, Liu M, El-Hodiri HM et al (2000) Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 20:3292–3307PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hunter CS, Maestro MA, Raum JC et al (2011) Hnf1alpha (MODY3) regulates beta-cell-enriched MafA transcription factor expression. Mol Endocrinol 25:339–347PubMedCrossRefGoogle Scholar
  36. Jacovetti C, Abderrahmani A, Parnaud G et al (2012) MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity. J Clin Invest 122:3541–3551PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jacquemin P, Lemaigre FP, Rousseau GG (2003a) The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev Biol 258:105–116PubMedCrossRefGoogle Scholar
  38. Jacquemin P, Pierreux CE, Fierens S et al (2003b) Cloning and embryonic expression pattern of the mouse Onecut transcription factor OC-2. Gene Expr Patterns 3:639–644PubMedCrossRefGoogle Scholar
  39. Jennings RE, Berry AA, Kirkwood-Wilson R et al (2013) Development of the human pancreas from foregut to endocrine commitment. Diabetes 62:3514–3522PubMedPubMedCentralCrossRefGoogle Scholar
  40. Joglekar MV, Parekh VS, Hardikar AA (2007a) New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab 18:393–400PubMedCrossRefGoogle Scholar
  41. Joglekar MV, Parekh VS, Mehta S et al (2007b) MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 311:603–612PubMedCrossRefGoogle Scholar
  42. Joglekar MV, Joglekar VM, Hardikar AA (2009a) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9:109–113PubMedCrossRefGoogle Scholar
  43. Joglekar MV, Patil D, Joglekar VM et al (2009b) The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets 1:137–147PubMedCrossRefGoogle Scholar
  44. Joglekar MV, Parekh VS, Hardikar AA (2011) Islet-specific microRNAs in pancreas development, regeneration and diabetes. Indian J Exp Biol 49:401–408PubMedGoogle Scholar
  45. Jonsson J, Carlsson L, Edlund T et al (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371:606–609PubMedCrossRefGoogle Scholar
  46. Kalis M, Bolmeson C, Esguerra JL et al (2011) Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS ONE 6, e29166PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kameswaran V, Bramswig NC, McKenna LB et al (2014) Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 19:135–145PubMedCrossRefGoogle Scholar
  48. Kanai-Azuma M, Kanai Y, Gad JM et al (2002) Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129:2367–2379PubMedGoogle Scholar
  49. Kanji MS, Martin MG, Bhushan A (2013) Dicer1 is required to repress neuronal fate during endocrine cell maturation. Diabetes 62:1602–1611PubMedPubMedCentralCrossRefGoogle Scholar
  50. Karolina DS, Armugam A, Tavintharan S et al (2011) MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS ONE 6, e22839PubMedPubMedCentralCrossRefGoogle Scholar
  51. Karolina DS, Tavintharan S, Armugam A et al (2012) Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97:E2271–E2276PubMedCrossRefGoogle Scholar
  52. Kataoka K, Shioda S, Ando K et al (2004) Differentially expressed Maf family transcription factors, c-Maf and MafA, activate glucagon and insulin gene expression in pancreatic islet alpha- and beta-cells. J Mol Endocrinol 32:9–20PubMedCrossRefGoogle Scholar
  53. Kawaguchi Y, Cooper B, Gannon M et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32:128–134PubMedCrossRefGoogle Scholar
  54. Keller DM, McWeeney S, Arsenlis A et al (2007) Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J Biol Chem 282:32084–32092PubMedCrossRefGoogle Scholar
  55. Kim JW, You YH, Jung S et al (2013) miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 56:847–855PubMedCrossRefGoogle Scholar
  56. Klein D, Misawa R, Bravo-Egana V et al (2013) MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS ONE 8, e55064PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kloosterman WP, Lagendijk AK, Ketting RF et al (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5, e203PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kong L, Zhu J, Han W et al (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48:61–69PubMedCrossRefGoogle Scholar
  59. Kornfeld JW, Baitzel C, Konner AC et al (2013) Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494:111–115PubMedCrossRefGoogle Scholar
  60. Krapp A, Knofler M, Ledermann B et al (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12:3752–3763PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kredo-Russo S, Mandelbaum AD et al (2012a) Pancreas-enriched miRNA refines endocrine cell differentiation. Development 139:3021–3031PubMedCrossRefGoogle Scholar
  62. Kredo-Russo S, Ness A, Mandelbaum AD et al (2012b) Regulation of pancreatic microRNA-7 expression. Exp Diabetes Res 2012:695214PubMedPubMedCentralCrossRefGoogle Scholar
  63. Landry C, Clotman F, Hioki T et al (1997) HNF-6 is expressed in endoderm derivatives and nervous system of the mouse embryo and participates to the cross-regulatory network of liver-enriched transcription factors. Dev Biol 192:247–257PubMedCrossRefGoogle Scholar
  64. Lannoy VJ, Burglin TR, Rousseau GG et al (1998) Isoforms of hepatocyte nuclear factor-6 differ in DNA-binding properties, contain a bifunctional homeodomain, and define the new ONECUT class of homeodomain proteins. J Biol Chem 273:13552–13562PubMedCrossRefGoogle Scholar
  65. Latreille M, Herrmanns K, Renwick N et al (2015) miR-375 gene dosage in pancreatic beta-cells: implications for regulation of beta-cell mass and biomarker development. J Mol Med. doi: 10.1007/s00109-015-1296-9 [Epub ahead of print]PubMedPubMedCentralGoogle Scholar
  66. Lee CS, Sund NJ, Vatamaniuk MZ et al (2002) Foxa2 controls Pdx1 gene expression in pancreatic beta-cells in vivo. Diabetes 51:2546–2551PubMedCrossRefGoogle Scholar
  67. Lee CS, Sund NJ, Behr R, Herrera PL et al (2005) Foxa2 is required for the differentiation of pancreatic alpha-cells. Dev Biol 278:484–495PubMedCrossRefGoogle Scholar
  68. Liao X, Xue H, Wang YC et al (2013) Matched miRNA and mRNA signatures from an hESC-based in vitro model of pancreatic differentiation reveal novel regulatory interactions. J Cell Sci 126:3848–3861PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lim J, Thiery JP (2012) Epithelial-mesenchymal transitions: insights from development. Development 139:3471–3486PubMedCrossRefGoogle Scholar
  70. Liu K, Liu Y, Mo W et al (2011) MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res 39:2869–2879PubMedCrossRefGoogle Scholar
  71. Liu Y, Gao G, Yang C et al (2014) The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci 15:10567–10577PubMedPubMedCentralCrossRefGoogle Scholar
  72. Locke JM, da Silva Xavier G et al (2014) Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia 57:122–128PubMedCrossRefGoogle Scholar
  73. Lovis P, Roggli E, Laybutt DR et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lynn FC, Skewes-Cox P et al (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56:2938–2945PubMedCrossRefGoogle Scholar
  75. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nair GG, Vincent RK, Odorico JS (2014) Ectopic Ptf1a expression in murine ESCs potentiates endocrine differentiation and models pancreas development in vitro. Stem Cells 32:1195–1207PubMedPubMedCentralCrossRefGoogle Scholar
  78. Naya FJ, Stellrecht CM, Tsai MJ (1995) Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 9:1009–1019PubMedCrossRefGoogle Scholar
  79. Naya FJ, Huang HP, Qiu Y et al (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 11:2323–2334PubMedPubMedCentralCrossRefGoogle Scholar
  80. Needhamsen M, White RB, Giles KM et al (2014) Regulation of human PAX6 expression by miR-7. Evol Bioinform Online 10:107–113PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nesca V, Guay C, Jacovetti C et al (2013) Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 56:2203–2212PubMedCrossRefGoogle Scholar
  82. Nielsen LB, Wang C, Sorensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362. doi: 10.1155/2012/896362 PubMedPubMedCentralGoogle Scholar
  83. Nieto M, Hevia P, Garcia E et al (2012) Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant 21:1761–1774PubMedCrossRefGoogle Scholar
  84. Ohlsson H, Karlsson K, Edlund T (1993) IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J 12:4251–4259PubMedPubMedCentralGoogle Scholar
  85. Olive V, Bennett MJ, Walker JC et al (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev 23:2839–2849PubMedPubMedCentralCrossRefGoogle Scholar
  86. Oropeza D, Horb M (2012) Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells. Genesis 50:271–285PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ortega FJ, Mercader JM, Moreno-Navarrete JM et al (2014) Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37:1375–1383PubMedCrossRefGoogle Scholar
  88. Osipova J, Fischer DC, Dangwal S et al (2014) Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab 99:E1661–E1665PubMedCrossRefGoogle Scholar
  89. Pearl EJ, Jarikji Z, Horb ME (2011) Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes. Dev Biol 351:135–145PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pescador N, Perez-Barba M, Ibarra JM et al (2013) Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS ONE 8, e77251PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pierreux CE, Poll AV, Kemp CR et al (2006) The transcription factor hepatocyte nuclear factor-6 controls the development of pancreatic ducts in the mouse. Gastroenterology 130:532–541PubMedCrossRefGoogle Scholar
  92. Piper K, Brickwood S, Turnpenny LW et al (2004) Beta cell differentiation during early human pancreas development. J Endocrinol 181:11–23PubMedCrossRefGoogle Scholar
  93. Poitout V (2008) Glucolipotoxicity of the pancreatic beta-cell: myth or reality? Biochem Soc Trans 36:901–904PubMedPubMedCentralCrossRefGoogle Scholar
  94. Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230PubMedCrossRefGoogle Scholar
  95. Poy MN, Hausser J, Trajkovski M et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106:5813–5818PubMedPubMedCentralCrossRefGoogle Scholar
  96. Prevot PP, Augereau C, Simion A et al (2013) Let-7b and miR-495 stimulate differentiation and prevent metaplasia of pancreatic acinar cells by repressing HNF6. Gastroenterology 145(668–678), e663Google Scholar
  97. Rafiq I, da Silva Xavier G et al (2000) Glucose-stimulated preproinsulin gene expression and nuclear trans-location of pancreatic duodenum homeobox-1 require activation of phosphatidylinositol 3-kinase but not p38 MAPK/SAPK2. J Biol Chem 275:15977–15984PubMedCrossRefGoogle Scholar
  98. Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59:978–986PubMedPubMedCentralCrossRefGoogle Scholar
  99. Roggli E, Gattesco S, Caille D et al (2012) Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 61:1742–1751PubMedPubMedCentralCrossRefGoogle Scholar
  100. Rong Y, Bao W, Shan Z et al (2013) Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus. PLoS ONE 8, e73272PubMedPubMedCentralCrossRefGoogle Scholar
  101. Rubio-Cabezas O, Minton JA, Kantor I et al (2010) Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 59:2326–2331PubMedPubMedCentralCrossRefGoogle Scholar
  102. Salas-Perez F, Codner E, Valencia E et al (2013) MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218:733–737PubMedCrossRefGoogle Scholar
  103. Sebastiani G, Grieco FA, Spagnuolo I et al (2011) Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev 27:862–866PubMedCrossRefGoogle Scholar
  104. Sebastiani G, Po A, Miele E et al (2015) MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 52:523–530PubMedCrossRefGoogle Scholar
  105. Seymour PA (2014) Sox9: a master regulator of the pancreatic program. Rev Diab Stud 11:51–83CrossRefGoogle Scholar
  106. Simion A, Laudadio I, Prevot PP et al (2010) MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem Biophys Res Commun 391:293–298PubMedCrossRefGoogle Scholar
  107. Slack JMW (1995) Developmental biology of the pancreas. Development 121:1569–1580PubMedGoogle Scholar
  108. Smith SB, Qu HQ, Taleb N et al (2010) Rfx6 directs islet formation and insulin production in mice and humans. Nature 463:775–780PubMedPubMedCentralCrossRefGoogle Scholar
  109. Spence JR, Lange AW, Lin SC et al (2009) Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell 17:62–74PubMedPubMedCentralCrossRefGoogle Scholar
  110. Stoffel M, Duncan SA (1997) The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc Natl Acad Sci USA 94:13209–13214PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sun K, Chang X, Yin L et al (2014) Expression and DNA methylation status of microRNA-375 in patients with type 2 diabetes mellitus. Mol Med Rep 9:967–972PubMedGoogle Scholar
  112. Tang F, Kaneda M, O’Carroll D et al (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21:644–648PubMedPubMedCentralCrossRefGoogle Scholar
  113. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96PubMedCrossRefGoogle Scholar
  114. Tao J, Wu D, Li P et al (2012) microRNA-18a, a member of the oncogenic miR-17-92 cluster, targets Dicer and suppresses cell proliferation in bladder cancer T24 cells. Mol Med Rep 5:167–172PubMedGoogle Scholar
  115. Tattikota SG, Rathjen T, McAnulty SJ et al (2014) Argonaute2 mediates compensatory expansion of the pancreatic beta cell. Cell Metab 19:122–134PubMedPubMedCentralCrossRefGoogle Scholar
  116. Vanhorenbeeck V, Jenny M, Cornut JF et al (2007) Role of the Onecut transcription factors in pancreas morphogenesis and in pancreatic and enteric endocrine differentiation. Dev Biol 305:685–694PubMedCrossRefGoogle Scholar
  117. Wang H, Gauthier BR, Hagenfeldt-Johansson KA et al (2002) Foxa2 (HNF3beta) controls multiple genes implicated in metabolism-secretion coupling of glucose-induced insulin release. J Biol Chem 277:17564–17570PubMedCrossRefGoogle Scholar
  118. Wang X, Sundquist J, Zoller B et al (2014) Determination of 14 circulating microRNAs in Swedes and Iraqis with and without diabetes mellitus type 2. PLoS ONE 9, e86792PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wei R, Yang J, Liu GQ et al (2013) Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 518:246–255PubMedCrossRefGoogle Scholar
  120. Weir GC, Laybutt DR, Kaneto H et al (2001) Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes 50(Suppl 1):S154–S159PubMedCrossRefGoogle Scholar
  121. Xu G, Chen J, Jing G, Shalev A (2013) Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 19:1141–1146PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yamagata K, Furuta H, Oda N et al (1996a) Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384:458–460PubMedCrossRefGoogle Scholar
  123. Yamagata K, Oda N, Kaisaki PJ et al (1996b) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384:455–458PubMedCrossRefGoogle Scholar
  124. Yang Y, Ding L, An Y et al (2012) MiR-18a regulates expression of the pancreatic transcription factor Ptf1a in pancreatic progenitor and acinar cells. FEBS Lett 586:422–427PubMedCrossRefGoogle Scholar
  125. Yang D, Lutter D, Burtscher I et al (2014) miR-335 promotes mesendodermal lineage segregation and shapes a transcription factor gradient in the endoderm. Development 141:514–525PubMedCrossRefGoogle Scholar
  126. Yang M, Ye L, Wang B et al (2015) Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J Diabetes 7:158–165PubMedCrossRefGoogle Scholar
  127. Zampetaki A, Kiechl S, Drozdov I et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817PubMedCrossRefGoogle Scholar
  128. Zhang ZW, Zhang LQ, Ding L et al (2011) MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1. FEBS Lett 585:2592–2598PubMedCrossRefGoogle Scholar
  129. Zhang T, Lv C, Li L, Chen S et al (2013a) Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals. Biomed Res Int 2013:761617PubMedPubMedCentralGoogle Scholar
  130. Zhang ZW, Men T, Feng RC et al (2013b) miR-375 inhibits proliferation of mouse pancreatic progenitor cells by targeting YAP1. Cell Physiol Biochem 32:1808–1817PubMedCrossRefGoogle Scholar
  131. Zhu Y, You W, Wang H et al (2013) MicroRNA-24/MODY gene regulatory pathway mediates pancreatic beta-cell dysfunction. Diabetes 62:3194–3206PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ryan J. Farr
    • 1
  • Mugdha V. Joglekar
    • 1
  • Anandwardhan A. Hardikar
    • 1
    Email author
  1. 1.Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Sydney Medical SchoolThe University of SydneyCamperdownAustralia

Personalised recommendations