Skip to main content

Parabolic Equations on Uniformly Regular Riemannian Manifolds and Degenerate Initial Boundary Value Problems

  • Chapter
Recent Developments of Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

In this work there is established an optimal existence and regularity theory for second order linear parabolic differential equations on a large class of noncompact Riemannian manifolds. Then it is shown that it provides a general unifying approach to problems with strong degeneracies in the interior or at the boundary.

Dedicated to Professor Yoshihiro Shibata on the occasion of his sixtieth birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Precise definitions of and notations for all terms used in this introduction without further explanation are found in the following sections and the Appendix.

References

  1. H. Amann, Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory (Birkhäuser, Basel, 1995)

    Book  MATH  Google Scholar 

  2. H. Amann, Maximal regularity for nonautonomous evolution equations. Adv. Nonlinear Stud. 4, 417–430 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Amann, Quasilinear parabolic problems via maximal regularity. Adv. Differ. Equ. 10(10), 1081–1110 (2005)

    MathSciNet  MATH  Google Scholar 

  4. H. Amann, Anisotropic Function Spaces and Maximal Regularity for Parabolic Problems. Part 1: Function Spaces. Jindřich Nečas Center for Mathematical Modeling, Lecture Notes, Prague, vol. 6, 2009.

    Google Scholar 

  5. H. Amann, Anisotropic function spaces on singular manifolds (2012). arXiv: 1204.0606

    Google Scholar 

  6. H. Amann, Function spaces on singular manifolds. Math. Nachr. 286, 436–475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Amann, Parabolic equations on noncompact Riemannian manifolds (in preparation)

    Google Scholar 

  8. H. Amann, Pseudodifferential boundary value problems (in preparation)

    Google Scholar 

  9. H. Amann, Uniformly regular and singular Riemannian manifolds, in Elliptic and Parabolic Equations, Hannover, September 2013, ed. by J. Escher, E. Schrohe, J. Seiler, C. Walker. Springer Proceedings in Mathematics & Statistics (2015), pp.1–43

    Google Scholar 

  10. B. Ammann, V. Nistor, Weighted Sobolev spaces and regularity for polyhedral domains. Comput. Methods Appl. Mech. Eng. 196, 3650–3659 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Ammann, R. Lauter, V. Nistor, On the geometry of Riemannian manifolds with a Lie structure at infinity. Int. J. Math. Math. Sci. 161–193 (2004)

    Google Scholar 

  12. B. Ammann, A.D. Ionescu, V. Nistor, Sobolev spaces on Lie manifolds and regularity for polyhedral domains. Doc. Math. 11, 161–206 (2006)

    MathSciNet  MATH  Google Scholar 

  13. C. Bacuta, A.L. Mazzucato, V. Nistor, Anisotropic regularity and optimal rates of convergence for the finite element method on three dimensional polyhedral domains (2012). arXiv:1205.2128

    Google Scholar 

  14. C. Bandle, F. Punzo, A. Tesei, Existence and nonexistence of patterns on Riemannian manifolds. J. Math. Anal. Appl. 387(1), 33–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Barbu, A. Favini, S. Romanelli, Degenerate evolution equations and regularity of their associated semigroups. Funkcial. Ekvac. 39(3), 421–448 (1996)

    MathSciNet  MATH  Google Scholar 

  16. E.B. Davies, Heat Kernels and Spectral Theory (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  17. R. Denk, M. Hieber, J. Prüss, \(\mathcal{R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788) (2003)

    Google Scholar 

  18. G. Dore, \(L^{p}\) regularity for abstract differential equations, in Functional Analysis and Related Topics, 1991 (Kyoto). Lecture Notes in Mathematics, vol. 1540 (Springer, Berlin, 1993), pp. 25–38

    Google Scholar 

  19. S. Fornaro, G. Metafune, D. Pallara, Analytic semigroups generated in \(L^{p}\) by elliptic operators with high order degeneracy at the boundary. Note Math. 31(1), 103–116 (2011)

    MathSciNet  MATH  Google Scholar 

  20. G. Fragnelli, G. Ruiz Goldstein, J.A. Goldstein, S. Romanelli, Generators with interior degeneracy on spaces of \(L^{2}\) type. Electron. J. Differ. Equ. 2012(189), 1–30 (2012)

    MathSciNet  MATH  Google Scholar 

  21. A. Grigor’yan, Heat Kernel and Analysis on Manifolds (American Mathematical Society, Providence, 2009)

    MATH  Google Scholar 

  22. G. Grubb, Parameter-elliptic and parabolic pseudodifferential boundary problems in global L p Sobolev spaces. Math. Z. 218, 43–90 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Grubb, Functional Calculus of Pseudodifferential Boundary Problems (Birkhäuser, Boston, 1996)

    Book  MATH  Google Scholar 

  24. G. Grubb, N.J. Kokholm, A global calculus of parameter-dependent pseudodifferential boundary problems in L p Sobolev spaces. Acta Math. 171, 165–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. V.A. Kondrat’ev, Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč. 16, 209–292 (1967)

    MathSciNet  Google Scholar 

  26. P.C. Kunstmann, L. Weis, Maximal \(L_{p}\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^{\infty }\)-functional calculus, in Functional Analytic Methods for Evolution Equations. Lecture Notes in Mathematics, vol. 1855 (Springer, Berlin, 2004), pp. 65–311

    Google Scholar 

  27. O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs (American Mathematical Society, Providence, 1968)

    Google Scholar 

  28. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems ( Birkhäuser, Basel, 1995)

    Book  MATH  Google Scholar 

  29. A.L. Mazzucato, V. Nistor, Mapping properties of heat kernels, maximal regularity, and semi-linear parabolic equations on noncompact manifolds. J. Hyperbolic Differ. Equ. 3(4), 599–629 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. M.A. Pozio, F. Punzo, A. Tesei, Criteria for well-posedness of degenerate elliptic and parabolic problems. J. Math. Pures Appl. (9) 90(4), 353–386 (2008)

    Google Scholar 

  31. F. Punzo, On well-posedness of semilinear parabolic and elliptic problems in the hyperbolic space. J. Differ. Equ. 251(7), 1972–1989 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Punzo, Blow-up of solutions to semilinear parabolic equations on Riemannian manifolds with negative sectional curvature. J. Math. Anal. Appl. 387(2), 815–827 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Shao, G. Simonett, Continuous maximal regularity on uniformly regular Riemannian manifolds (2013). arXiv:1309.2041

    Google Scholar 

  34. V. Vespri, Analytic semigroups, degenerate elliptic operators and applications to nonlinear Cauchy problems. Ann. Math. Pura Appl. (4) 155, 353–388 (2012)

    Google Scholar 

  35. Q.S. Zhang, Nonlinear parabolic problems on manifolds, and a nonexistence result for the noncompact Yamabe problem. Electron. Res. Announc. Am. Math. Soc. 3, 45–51 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Q.S. Zhang, Semilinear parabolic problems on manifolds and applications to the non-compact Yamabe problem. Electron. J. Differ. Equ. 2000(46), 1–30 (2000)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Amann .

Editor information

Editors and Affiliations

Appendix: Tensor Bundles

Appendix: Tensor Bundles

Let M be a manifold and V = (V, π, M) a vector bundle of rank n over it. For a nonempty subset S of M we denote by V  | S the restriction π −1(S) of V to S. If S is a submanifold or a union of connected components of ∂ M, then V  | S  is a vector bundle of rank n over S. As usual, V p : = V {p} is the fibre π −1(p) of V over p. By \(\Gamma (S,V )\) we mean the \(\mathbb{R}^{S}\) module of all sections of V (no smoothness).

As usual, TM and T M are the tangent and cotangent bundles of M. Then \(T_{\tau }^{\sigma }M:= TM^{\otimes \sigma }\otimes T^{{\ast}}M^{\otimes \tau }\) is for \(\sigma,\tau \in \mathbb{N}\) the \((\sigma,\tau )\)-tensor bundle of M, that is, the vector bundle of all tensors on M being contravariant of order \(\sigma\) and covariant of order τ. In particular, T 0 1 M = TM and T 1 0 M = T M, as well as \(T_{0}^{0}M = M \times \mathbb{R}\).

For \(\nu \in \mathbb{N}^{\times }\) we put \(\mathbb{J}_{\nu }:=\{ 1,\ldots,m\}^{\nu }\). Then, given local coordinates κ = (x 1, , x m) and setting

$$\displaystyle{ \frac{\partial } {\partial x^{(i)}}:= \frac{\partial } {\partial x^{i_{1}}} \otimes \cdots \otimes \frac{\partial } {\partial x^{i_{\sigma }}},\quad dx^{(\,j\,)}:= dx^{\,j_{1} } \otimes \cdots \otimes dx^{j_{\tau }}}$$

for \((i) = (i_{1},\ldots,i_{\sigma }) \in \mathbb{J}_{\sigma }\)\((\,j\,) \in \mathbb{J}_{\tau }\), the local representation of a \((\sigma,\tau )\)-tensor field \(a \in \Gamma (T_{\tau }^{\sigma }M)\) with respect to these coordinates is given by

$$\displaystyle{a = a_{(\,j\,)}^{(\,i\,)} \frac{\partial } {\partial x^{(\,i\,)}} \otimes dx^{(\,j\,)}}$$

with \(a_{(j)}^{(i)} \in \mathbb{R}^{U_{\kappa }}\). We use the summation convention for (multi-)indices labeling coordinates or bases. Thus such a repeated index, which appears once as a superscript and once as a subscript, implies summation over its whole range.

Suppose \(\sigma _{1},\sigma _{2},\tau _{1},\tau _{2} \in \mathbb{N}\). Then the complete contraction

$$\displaystyle{\Gamma (T_{\tau _{2}+\sigma _{1}}^{\sigma _{2}+\tau _{1} }M) \times \Gamma (T_{\tau _{1}}^{\sigma _{1} }M) \rightarrow \Gamma (T_{\tau _{2}}^{\sigma _{2} }M),\quad (a,b)\mapsto a \cdot b}$$

is defined as follows: Given \((i_{k}) \in \mathbb{J}_{\sigma _{k}}\) and \((j_{k}) \in \mathbb{J}_{\tau _{k}}\) for k = 1, 2, we set

$$\displaystyle{(i_{2};j_{1}):= (i_{2,1},\ldots,i_{2,\sigma _{2}},j_{1,1},\ldots,j_{1,\tau _{1}}) \in \mathbb{J}_{\sigma _{2}+\tau _{1}}}$$

etc., using obvious interpretations if \(\min \{\sigma,\tau \}= 0\). Suppose \(a \in \Gamma (T_{\tau _{2}+\sigma _{1}}^{\sigma _{2}+\tau _{1}}M)\) and \(b \in \Gamma (T_{\tau _{1}}^{\sigma _{1}}M)\) are locally represented on \(U_{\kappa }\) by

$$\displaystyle{a = a_{(j_{2};i_{1})}^{(i_{2};j_{1})}\, \frac{\partial } {\partial x^{(i_{2})}} \otimes \frac{\partial } {\partial x^{(j_{1})}} \otimes dx^{(j_{2})} \otimes dx^{(i_{1})},\quad b = b_{ (j_{1})}^{(i_{1})}\, \frac{\partial } {\partial x^{(i_{1})}} \otimes dx^{(j_{1})}.}$$

Then the local representation of a ⋅ b on \(U_{\kappa }\) is given by

$$\displaystyle{a_{(j_{2};i_{1})}^{(i_{2};j_{1})}\,b_{ (j_{1})}^{(i_{1})}\, \frac{\partial } {\partial x^{(i_{2})}} \otimes dx^{(j_{2})}.}$$

Let g be a Riemannian metric on TM. We write \(g_{\flat }: TM \rightarrow T^{{\ast}}M\) for the (fiber-wise defined) Riesz isomorphism. Thus \(\langle g_{\flat }X,Y \rangle = g(X,Y )\) for \(X,Y \in \Gamma (TM)\), where \(\langle \cdot,\cdot \rangle: \Gamma (T^{{\ast}}M) \times \Gamma (TM) \rightarrow \mathbb{R}^{M}\) is the natural (fiber-wise defined) duality pairing. The inverse of g is denoted by \(g^{\sharp }\). Then g , the adjoint Riemannian metric on T M, is defined by \(g^{{\ast}}(\alpha,\beta ):= g(g^{\sharp }\alpha,g^{\sharp }\beta )\) for \(\alpha,\beta \in \Gamma (T^{{\ast}}M)\). In local coordinates

$$\displaystyle{ g = g_{ij}\,dx^{i} \otimes dx^{j},\quad g^{{\ast}} = g^{ij}\, \frac{\partial } {\partial x^{i}} \otimes \frac{\partial } {\partial x^{j}}, }$$
(64)

[g ij] being the inverse of the (m × m)-matrix [g ij ].

The metric g induces a vector bundle metric on \(T_{\tau }^{\sigma }M\) which we denote by \(g_{\sigma }^{\tau }\). In local coordinates

$$\displaystyle{ g_{\sigma }^{\tau }(a,b) = g_{(i)(j)}g^{(k)(\ell)}a_{ (k)}^{(i)}b_{ (\ell)}^{(j)},\qquad a,b \in \Gamma (T_{\tau }^{\sigma }M), }$$
(65)

where

$$\displaystyle{ g_{(i)(j)}:= g_{i_{1}j_{1}}\cdots g_{i_{\sigma }j_{\sigma }},\quad g^{(k)(\ell)}:= g^{k_{1}\ell_{1} }\cdots g^{k_{\tau }\ell_{\tau }} }$$
(66)

for \((i),(j) \in \mathbb{J}_{\sigma }\) and \((k),(\ell) \in \mathbb{J}_{\tau }\). Note g 1 0 = g and g 0 1 = g and g 0 0(a, b) = ab for \(a,b \in \Gamma (M \times \mathbb{R}) = \mathbb{R}^{M}\). Moreover,

$$\displaystyle{ \vert \cdot \vert _{g_{\sigma }^{\tau }}: \Gamma (T_{\tau }^{\sigma }M) \rightarrow (\mathbb{R}^{+})^{M},\quad a\mapsto \sqrt{g_{\sigma }^{\tau }(a, a)} }$$
(67)

is the vector bundle norm on \(T_{\tau }^{\sigma }M\) induced by g. It follows that the complete contraction satisfies

$$\displaystyle{ \vert a \cdot b\vert _{g_{\sigma _{ 2}}^{\tau _{2}}} \leq \vert a\vert _{g_{\sigma _{ 2}+\tau _{1}}^{\tau _{2}+\sigma _{1}}}\,\vert b\vert _{g_{\sigma _{ 1}}^{\tau _{1}}},\qquad a \in \Gamma (T_{\tau _{2}+\sigma _{1}}^{\sigma _{2}+\tau _{1} }M),\quad b \in \Gamma (T_{\tau _{1}}^{\sigma _{1} }M). }$$
(68)

We define a vector bundle isomorphism \(T_{\tau +1}^{\sigma }M \rightarrow T_{\tau }^{\sigma +1}M\)\(a\mapsto a^{\sharp }\) by

$$\displaystyle{ a^{\sharp }(\alpha _{ 1},\ldots,\alpha _{\sigma },\alpha,X_{1},\ldots,X_{\tau }):= a(\alpha _{1},\ldots,\alpha _{\sigma },X_{1},\ldots,X_{\tau },g^{\sharp }\alpha ) }$$
(69)

for \(X_{1},\ldots,X_{\tau } \in \Gamma (TM)\) and \(\alpha,\alpha _{1},\ldots,\alpha _{\sigma } \in \Gamma (T^{{\ast}}M)\). If a (j; k) (i) with \((i) \in \mathbb{J}_{\sigma }\)\((j) \in \mathbb{J}_{\tau }\), and \(k \in \mathbb{J}_{1}\) is the coefficient of a in a local coordinate representation, then

$$\displaystyle{ (a^{\sharp })_{ (j)}^{(i;k)} = g^{k\ell}a_{ (j;\ell)}^{(i)}. }$$
(70)

This implies

$$\displaystyle{ \vert a^{\sharp }\vert _{ g_{\sigma +1}^{\tau }} = \vert a\vert _{g_{\sigma }^{\tau +1}}. }$$
(71)

The Levi-Civita connection on TM is denoted by \(\nabla = \nabla _{g}\). We use the same symbol for its natural extension to a metric connection on \(T_{\tau }^{\sigma }M\). Then the corresponding covariant derivative is the linear map

$$\displaystyle{\nabla: C^{\infty }(T_{\tau }^{\sigma }M) \rightarrow C^{\infty }(T_{\tau +1}^{\sigma }M),\quad a\mapsto \nabla a,}$$

defined by \(\langle \nabla a,b \otimes X\rangle:=\langle \nabla _{X}a,b\rangle\) for \(b \in C^{\infty }(T_{\sigma }^{\tau }M)\) and \(X \in C^{\infty }(TM)\). It is a well-defined continuous linear map from \(C^{1}(T_{\tau }^{\sigma }M)\) into \(C(T_{\tau +1}^{\sigma }M)\), as follows from its local representation. For \(k \in \mathbb{N}\) we define

$$\displaystyle{\nabla ^{k}: C^{k}(T_{\tau }^{\sigma }M) \rightarrow C(T_{\tau +k}^{\sigma }M),\quad a\mapsto \nabla ^{k}a}$$

by ∇0 a: = a and ∇k+1: = ∇∘∇k.

In local coordinates κ = (x 1, , x m) the volume measure dv = dv g of (M, g) is represented by \(\kappa _{{\ast}}\,dv =\kappa _{{\ast}}\sqrt{g}\,dx\), where \(\sqrt{g}:={\bigl (\det [g_{ij}]\bigr )}^{1/2}\) and dx is the Lebesgue measure on \(\mathbb{R}^{m}\).

The contraction \(\mathsf{C}: T_{\tau +1}^{\sigma +1}M \rightarrow T_{\tau }^{\sigma }M\)aC a is given in local coordinates by (C a)(j) (i): = a (j; k) (i; k). It follows

$$\displaystyle{ \vert \mathsf{C}a\vert _{g_{\sigma }^{\tau }} = \vert a\vert _{g_{\sigma +1}^{\tau +1}}. }$$
(72)

Recall that the divergence of tensor fields is the map

$$\displaystyle{ \mathop{\mathrm{div}}\nolimits =\mathop{ \mathrm{div}}\nolimits _{g}: C^{1}(T_{\tau }^{\sigma +1}M) \rightarrow C(T_{\tau }^{\sigma }M),\quad a\mapsto \mathop{\mathrm{div}}\nolimits a:= \mathsf{C}(\nabla a). }$$
(73)

If X is a C 1 vector field on M, then \(\mathop{\mathrm{div}}\nolimits X\) has the well-known local representation

$$\displaystyle{ \frac{1} {\sqrt{g}}\, \frac{\partial } {\partial x^{i}}{\bigl (\sqrt{g}\,X^{i}\bigr )},\qquad X = X^{i}\, \frac{\partial } {\partial x^{i}}. }$$
(74)

The gradient, \(\mathop{\mathrm{grad}}\nolimits u =\mathop{ \mathrm{grad}}\nolimits _{g}u\), of a C 1 function u is the continuous vector field \(g^{\sharp }du\).

Suppose a ∈ C 1(T 1 1 M). Then, in terms of covariant derivatives,

$$\displaystyle{ \mathop{\mathrm{div}}\nolimits (a\mathop{\mathrm{grad}}\nolimits u) = a^{\sharp } \cdot \nabla ^{2}u +\mathop{ \mathrm{div}}\nolimits (a^{\sharp }) \cdot \nabla u. }$$
(75)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Basel

About this chapter

Cite this chapter

Amann, H. (2016). Parabolic Equations on Uniformly Regular Riemannian Manifolds and Degenerate Initial Boundary Value Problems. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds) Recent Developments of Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0939-9_4

Download citation

Publish with us

Policies and ethics