Skip to main content

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

The aim of this work is to provide a brief presentation of the Nash-Moser iteration technique for the resolution of nonlinear equations, where the linearized equations admit estimates with a loss of regularity with respect to the given data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Similar smoothing operators \(S_{Y }(\theta ): Y _{0} \rightarrow Y _{\infty }:= \cap _{m\geq 0}Y _{m}\) are introduced as well.

  2. 2.

    Following Hörmander’s method [2, 11], in the sequel our iteration scheme will be a little more elaborated than in (5).

References

  1. S. Alinhac, Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Partial Differ. Equ. 14, 173–230 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Alinhac, P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser (InterEditions, Paris, 1991)

    Google Scholar 

  3. V.I. Arnol’d, Small denominators. I. Mapping the circle onto itself. Izv. Akad. Nauk SSSR Ser. Mat. 25, 21–86 (1961)

    Google Scholar 

  4. V.I. Arnol’d, Small denominators and problems of stability of motion in classical and celestial mechanics. Usp. Mat. Nauk 18, 91–192 (1963)

    MathSciNet  MATH  Google Scholar 

  5. G.-Q. Chen, Y.-G. Wang, Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187, 369–408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.F. Coulombel, P. Secchi, Nonlinear compressible vortex sheets in two space dimensions. Ann. Sci. École Norm. Sup. 41(4), 85–139 (2008)

    MathSciNet  MATH  Google Scholar 

  7. I. Ekeland, An inverse function theorem in Fréchet spaces. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28, 91–105 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Günther, On the perturbation problem associated to isometric embeddings of Riemannian manifolds. Ann. Glob. Anal. Geom. 7, 69–77 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. R.S. Hamilton, The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7, 65–222 (1982)

    Google Scholar 

  10. L. Hörmander, The boundary problems of physical geodesy. Arch. Ration. Mech. Anal. 62, 1–52 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Hörmander, Implicit function theorems. Stanford University Lecture Notes (1977)

    Google Scholar 

  12. T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems. Lezioni Fermiane [Fermi Lectures] (Scuola Normale Superiore, Pisa, 1985)

    Google Scholar 

  13. A.N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.) 98, 527–530 (1954)

    Google Scholar 

  14. J. Moser, A new technique for the construction of solutions of nonlinear differential equations. Proc. Natl. Acad. Sci. U.S.A. 47, 1824–1831 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Moser, A rapidly convergent iteration method and non-linear differential equations II. Ann. Scuola Norm. Sup. Pisa 20(3), 499–535 (1966)

    MathSciNet  MATH  Google Scholar 

  16. J. Nash, The imbedding problem for Riemannian manifolds. Ann. Math. 63(2), 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Schwartz, On Nash’s implicit functional theorem. Commun. Pure Appl. Math. 13, 509–530 (1960)

    Article  MATH  Google Scholar 

  18. P. Secchi, Y. Trakhinin, Well-posedness of the plasma-vacuum interface problem. Nonlinearity 27, 105–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Trakhinin, The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191, 245–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Secchi .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Y. Shibata in occasion of his 60-th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Basel

About this chapter

Cite this chapter

Secchi, P. (2016). On the Nash-Moser Iteration Technique. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds) Recent Developments of Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0939-9_23

Download citation

Publish with us

Policies and ethics