Skip to main content

Traditional Medicinal Oils Sourced from Birds: Anti-inflammatories and Potential Immunoregulants

  • Chapter
  • First Online:

Part of the book series: Progress in Drug Research ((PDR,volume 70))

Abstract

This chapter describes medicinal oils of animal origin, used in Africa and Australasia both for nutritional and medicinally for treating pain and inflammation. Analytical studies of composition, bio-efficacy and their remarkable safety are described. For obtaining reproducible benefits, it is very important to introduce Quality Controls whenever possible. These should cover all stages of production, storage and certify the ‘truth in their advertising’: to help eliminate adulterated products and false claims for purity and potency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Avis(Latin) = bird; pharmaco(n) (sing.), pharmaca(plural, Greek) = drug.

  2. 2.

    In this context consider the fermentation products associated with wine-making, brewing and baking. Or the essential microbial factors used to manufacture cheese, generate flavours and food additives e.g. from soya bean etc., as well as producing mainline antibiotics.

  3. 3.

    Udo Erasmus (1993) noted ‘the most easily destroyed oils are also nutritionally the most valuable’ and that ‘refined white fats and oils are nutritionally equivalent to refined white sugar and white flour’. But this may not be true for medicinal oils from animals and birds, which predominantly contain saturated or mono-unsaturated lipids (before fungal fermentation). 

  4. 4.

    As Erasmus also noted, “Healers and manufacturers head in opposite directions regarding oils”, adding the sensible nutritional advice, “Eat things that spoil, but eat them before they do”.

Abbreviations

AI:

Anti-inflammatory

AO:

Anti-oxidant

EO:

Emu oil

FAME:

Fatty acid methylester

GO:

Goanna oil

HPLC:

High pressure liquid chromatography

IS:

Immunosuppressant

MBO:

Mutton bird oil

OO:

Ostrich oil

NZ:

New Zealand

PUFA:

Polyunsaturated fatty acids

SSF:

Solid substrate fermentation

16:0:

Palmitic acid

18:1:

Oleic acid

18:2:

Linoleic acid

18:3:

α-linolenic acid

20:4:

Arachidonic acid

References

  • Abimosleh SM, Tran CD, Howarth GS. (2013) Emu oil reduces small intestinal inflammation in the absence of clinical improvement in a rat model of indomethacin-induced enteropathy. Evid Based Complement Alternat Med. 2013:429706. doi:10.1155/2013/429706

  • Barr IG, Hamilton RJ, Simpson K (1970) Triglyceride analysis: neatsfoot oil and sperm whale oil. Chem Ind 30:988–989

    CAS  PubMed  Google Scholar 

  • Bennett DC, Code WE, Godin DV, Cheng KM (2008) Comparison of the antoxidant properties of emu oil with other avian oils. Aust J Exp Agric 48:1345–1350

    Article  CAS  Google Scholar 

  • Bennett G (1860) Gatherings of a naturalist, London; cited in the Australian Encyclopaedia 1958, vol III. Angus & Robertson, Sydney, pp 389–391

    Google Scholar 

  • Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak BB (2013) The resolution of inflammation. Nat Rev Immunol 13:59–66

    Article  CAS  PubMed  Google Scholar 

  • Capelli B, Cysewski GR (2012) Natural Astaxanthin. The world’s best kept health secret. Cyanotech Corporation, Kailua-Kina, p 188

    Google Scholar 

  • Carroll R, Martine CT (2011) An ecological and cultural review of the emu (Dromaius Novae Hollandiae): dreamtime-present. Scientia Discipuloram 5:77–90

    Google Scholar 

  • Cheah CC, Hansen IA (1970) Wax esters in the stomach of petrels. Int J Biochem 1:198–202

    Article  CAS  Google Scholar 

  • Clarke A (1989) Seabirds (stomach oils). In: Ackman RG (ed) Marine biogenic lipids, fats and oils, vol II. CRC Press, Boca Raton, pp 389–394

    Google Scholar 

  • Cock I (2008) Antimicrobial activity of Eucalyptus major and Eucalyptus baileyana methanolic extracts. Internet J Microbiol 6(1)

    Google Scholar 

  • Craig-Schmidt M (1998) Fatty acid composition of emu, ostrich and rhea oils; cited by Minnaar 1998, p 219

    Google Scholar 

  • Davies SJJF (2002) Bird families of the world: Ratites and Tinamous. Oxford University Press, Oxford, p 310

    Google Scholar 

  • Erasmus U (1993) Fats that heal, fats that kill, 2nd edn. Alive Books, Burnaby, 456 pp

    Google Scholar 

  • Fein E, Capito AK, Nagel KI (1995) Therapeutic uses of emu oil. US Patent 5,472,713

    Google Scholar 

  • Ferrante A (2005) Therapeutic properties of oils. US Patent 2005-0123479, 9 June 2005

    Google Scholar 

  • Gavenji S, Larki B, Taraghian AH (2013) A review of application of ostrich oil in pharmacy and disease treatment. J Novel Appl Sci 2:650–654

    Google Scholar 

  • Ghosh P, Whitehouse MW, Dawson M, Turner AG (1995) Anti-inflammatory composition derived from emu oil. US Patent 5,431,922

    Google Scholar 

  • Gillespie D (2012) Toxic oil. Why vegetable oil will kill you and how to save yourself. Melbourne, Viking (Penguin Books), pp 58–59

    Google Scholar 

  • Gregory H (1985) Goanna, the genuine bush remedy. JC Marconi, Salisbury, 40 pp

    Google Scholar 

  • Grice JE, Ciotti S, Weiner N, Lockwood P, Cross SE, Roberts MS (2010) Relative uptake of minoxidil into appendages and stratum corneum and permeation through human skin in vitro. J Pharm Sci 99:712–718

    CAS  PubMed  Google Scholar 

  • Gunstone FDG, Russell WR (1954) Animal fats 3. The component acids of ostrich fat. Biochem J 57:359–461

    Google Scholar 

  • Gunstone FD, Harwood JL, Padley FB (eds) (1986) The lipid handbook, 1st edn. Chapman and Hall, London, p 99

    Google Scholar 

  • Hilditch TP (1956) Neatsfoot oil in the chemical constitution of natural fats, 3rd edn. Chapman and Hall, London, pp 96, 413–414

    Google Scholar 

  • Horbanczuk JO, Cooper RG, Jozwik A, Klewiec J, Krzyzewski J, Malecki I et al (2003) Cholesterol content and fatty acid composition of fat from culled breeding ostriches (Struthio camelus). Animal Sci Pap Rep (Polish Acad Sci, Jastrzebiec, Poland) 21:271–275

    Google Scholar 

  • Horrobin DF (1987) Low prevalance of coronary heart disease, psoriasis, asthma and rheumatoid arthritis in Eskimos. Med Hypotheses 22:421–428

    Article  CAS  PubMed  Google Scholar 

  • Howarth GS, Lindsay RJ, Butler RN, Geier MS (2008) Can emu oil ameliorate inflammatory disorders affecting the gastro-intestinal system? Aust J Exp Agric 48:1276–1279

    Article  CAS  Google Scholar 

  • Jyonouchi H, Zhang L, Tomita Y (1993) Studies of immunomodulating actions of carotenoids. II. Astaxanthin enhances in vitro antibody production to T-dependent antigens without facilitating polyclonal B-cell activations. Nutr Cancer 19:269–280

    Article  CAS  PubMed  Google Scholar 

  • Kalaya (1990) A guide to emu farming in Queensland. Kalaya Emu Farming, Rochedale, 85 pp

    Google Scholar 

  • Krut IH, Bronte-Stewart B (1964) The fatty acids of human depot fat. J Lipid Res 5:343–351

    CAS  PubMed  Google Scholar 

  • Lacey P, Lacey S (1996) Emu observations 1993–1996. Australian Emu, Issue No. 11, pp 22–25

    Google Scholar 

  • Lindsay R, Gregory MS, Yazbeck R, Butler RN, Howarth GS (2010) Orally administered emu oil decreases acute inflammation and alters selected small intestinal parameters in a rat model of mucositis. Br J Nutr 104:513–519

    Article  CAS  PubMed  Google Scholar 

  • MacDonald WM (1985) Quoting Donald Guthrie in one day at a time. Everyday Publications, Scarborough, ONT, p 142

    Google Scholar 

  • McGee P, Turner AG (unpublished observations)

    Google Scholar 

  • Minnaar M (1998) The emu farmer’s handbook, vol 2. Nyoni Publ. Co., Groveton, Texas, 320 pp

    Google Scholar 

  • Minnaar P, Minnaar M (1992) The emu farmer’s handbook, vol 1. Nyoni Publ. Co., Groveton, Texas, 177 pp

    Google Scholar 

  • De Mosenthal J, Hartung JE (1877) Ostriches and ostrich farming. Trubner & Co., London, pp 50–51

    Google Scholar 

  • O’Malley P, Snowden JM (1999) Emu products: increasing production and profitability. Publication No. 99/143. Australian Industries Research and Development Corporation, Canberra, Part C, pp 105–110

    Google Scholar 

  • Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 1:174–188

    Article  Google Scholar 

  • Riley TV, Carson CF (1999) Emu oil—its antimicrobial and antiviral potential. Publications No. 94-132, RIRDC, Canberra, 8 pp

    Google Scholar 

  • Roberts-Thomson RA, Roberts-Thomson PJ (1999) Rheumatic disease and the Australian Aborigine. Ann Rheum Dis 58:266–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sales J (1999) Slaughter and products (Ch 10). In: Deeming DC (ed) The ostrich: biology, production and health. CABI Publications, Wallingford, UK 358 pp

    Google Scholar 

  • Sales J, LeR Franken (1996) Ostrich fat. Austr Ostr Assoc J. 37:39–45

    Google Scholar 

  • Schlipalius L, Whitehouse MW. Unpublished observations.

    Google Scholar 

  • Smith EW, Maibach H (eds) (1995) Percutaneous penetration enhancers. CRC Press, Boca Raton, 500 pp

    Google Scholar 

  • Snowden JM, Whitehouse MW (1997) Anti-inflammatory activity of emu oil in rats. Inflammopharmacol. 5:127–132

    Article  CAS  Google Scholar 

  • Swanson S (1976) Lizards of Australia. Angus and Robertson Publishers, Sydney 80 pp

    Google Scholar 

  • Thompson P (2002) Second draft. Emu oil: research and documentation collation, 70 pp. http://www.emufarm.iinet.net.au/pdf/emuoilresearch.pdf

  • Turner W (1544) Turner on birds: a short and succinct history of the principal birds noticed by Pliny and Aristotle. Evans AH (ed) (1903). Cambridge, Cambridge University Press (text in Latin and English), 223 pp

    Google Scholar 

  • Turner AG (2012) Biologically active oils. Austr patent No. 2010 257,352. 58 pp & 20 pp illustrations

    Google Scholar 

  • Vera-Lastra O, Medina G, Cruz-Dominguez MP, Jarrah LJ, Schoenfeld Y (2013) Autoimmune/inflammatory syndrome induced by adjuvants (Schoenfeld’s Syndrome) clinical and immunological spectrum. Exp Rev Clin Immunol 9:361–373

    Google Scholar 

  • Warham J (1977) The incidence, functions and ecological significance of petrel stomach oils. Proc NZ Ecol Soc 24:84–93

    Google Scholar 

  • Warham J, Watts R, Dainty RJ (1976) The composition, energy content and function of the stomach oils of petrels (Order, Procellariiformes). J Exp Mar Biol Ecol 23:1–13

    Google Scholar 

  • Whitehouse M (2012) Oily adjuvants and auto-immunity: now time for reconsideration? Lupus 21:217–222

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse MW, Orr KJ, Beck FWJ, Pearson CM (1974) Freund’s adjuvants. Relationship of arthritigenicity and adjuvanticity in rats to vehicle composition. Immunology 27:311–330

    Google Scholar 

  • Whitehouse MW, Turner AG, Davis CRC, Roberts MS (1998) Emu oil(s): a source of non-toxic transdermal anti-inflammatory agents in Aboriginal medicine. Inflammopharmacol. 6:1–8

    Article  CAS  Google Scholar 

  • Whitehouse MW, Butters DE, Clarke ML, Rainsford KD (2001) NSAID gastropathy: prevention by celery seed extracts in disease-stressed rats. Inflammopharmacology 9:201–209

    Article  Google Scholar 

  • Wilkinson JM, Cavanagh HMA (2005) Antibacterial activity of essential oils from Australian native plants. Phytother Res. 19:643–646

    Article  PubMed  Google Scholar 

  • Williams C (2011) Medicinal plants in Australia. Volume 2 (gums, resins, tannin and essential oils). Dural NSW, Rosenberg Publ. Co., 344 pp

    Google Scholar 

  • Woodward DR, Riley MD, Buick DR, Nicholls DS, Nicholls PD (1995) Nutritional analysis of the flesh and oil of Yolla, the Tasmanian muttonbird Puffinus tenuirostris: a useful source of Omega-3 polyunsaturated fally acids. Aust J Nutr Diet 52:87–91

    Google Scholar 

Download references

Acknowledgments

We are much indebted to many bird farmers in Australia, Southern Africa, and New Zealand for providing oil/fat samples; to P. Lacey, W. Schaletzki (Vic) and P. Thompson (Qld) for advice on emu husbandry; to S. Birch (RSA) and Dr. D. Hayter (Zimbabwe) for advice on ostrich husbandry; to Dr. P. McGee, University of Sydney for identifying fungi; to Professor P. Ghosh for initiating scientific studies of emu pharmaca; and to Desley Butters for preparing the typescript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Whitehouse .

Editor information

Editors and Affiliations

Appendices

Appendix A

Avian-sourced anti-inflammatories: some positive features and negative factors

Positive

Negative

Renewable resource

Sustainable(?)

Extended experience (safety, efficacy, etc.)

This ‘wisdom’ is often derided/ignored, having little profit value

Favourable attributes for rural production:

– Minimal energy input

– Minimal polluting output

– Marketable by-products, e.g. meat, hides, feathers

– low labour component

 

Extra-urban farming/sourcing

 

Suitable for countries with limited resources (energy, raw materials)

 

Low financial investment for production, i.e. fences rather than factories

Insufficient investment for rigorous clinical trials—if made obligatory

Scope for quality improvement in:

– Breeding (birds and symbiont microbes)

– Efficient feed stuffs

– Parasite control

– Product stability

– Pharmaco-availability, e.g. improving transdermal delivery

Erratic quality and lack of Quality controlsa

  1. aParticularly to eliminate bad/fake products being marketed as substitutes for genuine medicinal oils

Appendix B

A comparison of (i) anti-arthritic and gastroprotective (GP) activities with (ii) the safety of some bird and goanna oils in rats developing experimental arthritis

Doses = ≤2 ml/kg oil

Efficacy scores = asterisks (*), toxicity scores = + on a scale 0–4; as indications of a potential therapeutic index, i.e. a benefit: risk ratio to be derived here as anti-arthritic/pathogenic scores, i.e. (*/+)

Source of Oil

Anti-arthritic efficacy

GP activity3

Pathogenicity4

Dermal1

Oral-ST2

Oral-LT2

Oral (%)

AIA

CIA

Emu fat, Australia

 WA (Kalaya)

3*

3.1*

2.6*

58

0.6+

0.3+

 Qld (Cherburg)

3.3*

1.2*

3*

68

+

0.5+

 NSW (Turner)

3.7*

3.8*

2.8*

 

0.2+

 

 Vic (Baramul)

3.5*

3.8*

3.4*

100

0.5+

1.2+

 Others (n = 23)

<2.0*

0.9*

<0.5*

<23

1.7–3.3+

 

Ostrich fat from birds in

 Africa (n = 3)5

3.6*

1.2*

1.7*

82

0.4+

1.7+

 Vic (n = 1)

2.1*

1.8*

 

63

2.3+

 

 NSW, Qld, SA, WA (n = 7)

<1.1*

 

07*

07

3+

 

Muttonbird (proventricular oil)

 Tas (Yolla, n = 3)

33*

0.7*

0

84

0.2+

0.5+

 SA (Bickford)

1.4*

   

2.3+

 

 NZ (Stewart Is)

3*

 

0.3*

 

0.3+

 

Goanna fat

 Qld (n = 3)

4*

  

54

0.2+

0.3+

 NSW (n = 1)

2.7*

   

0.4+

0.7+

Data = mean values from replicate studies (n = 2–7), each with 3–5 rats per group. Experimental details given in published reports (Whitehouse et al. 1998, 2001; Turner 2012) also outlined below.

Key to Table:

  1. 1.

    Rubbed into shaved dorsal skin after mycobacterial-induced (adjuvant) arthritis was established for 10 days. Effects quantified by reduction in arthritic scores, compared to store-bought light olive oil (**** = very effective, i.e. no arthritis and 0 = no effect).

  2. 2.

    Given orally once daily for short term (ST) dosing = 4 days only beginning after first sign of arthritis expression (usually day 10) as in (1) above, or long-term (LT) dosing = for 15 days from time of arthritis inception.

  3. 3.

    Inhibition of gastric bleeding from oral ibuprofen (80 mg/kg) in arthritic rats (Whitehouse et al. 2001), oils administered orally 5 min previously: data here = mean of three studies.

  4. 4.

    Adverse immunostimulant (potential adjuvant) activity for inducing arthritis with mycobacterial (AIA) or collagen type-II (CIA) arthritigens (see text). These scores are toxicities on a scale of 0–4+; 0 = no induction of arthritis (4+ = maximum severity when mineral oil was the adjuvant oil).

  5. 5.

    Two from South Africa, one from Zimbabwe.

Sources of traditional medicinal oils

  • Emu. Dromaius novaehollandiae = flightless bird native to Australia.

  • Ostrich. Struthio camelus = flightless bird, originally from Africa and the Middle East.

  • Muttonbird. Puffinus tenuirostris = seabird from Southern Australia and New Zealand

  • Goanna (Monitor lizards) of Varanidae family found in North and Central Australia. (Other monitors inhabit Asia and Africa)

Key to sources:

NSW, Qld, SA, Tas, Vic, WA = Australian States; NZ = New Zealand

Appendix C

Fatty acid composition of some triglyceride oils

Data = % w/w of total fatty acids from triglycerides (and waxes)

Fatty acid

Human skin

Emu oils from

Olive oils

Palm oil7

S.Africa (SD)1

USA2

USA2

S.Aus3

Vic4

WAust5

Aus(SE)6

CDX7

Malta8

ESP3

12:0

0.4 (0.2)

     

0.4 (0.7)

    

14:0

3.4 (1.2)

2.1

0.4

 

0.3

0.4

0.4 (0.1)

   

0.5 = 5.9

16:0

22.7 (2.6)

20.2

22.0

24

19.8

26.0

20.4 (2.3)

7.5–20

15.9

10.4

32–59

16:1 ω7

8.4 (2.2)

3.8

3.5

4.3

2.8

4.7

3.7 (1.0)

0.3–3.5

1.4

0.7

 

18:0

4.3 (1.6)

11.2

9.6

8.5

8.5

9.8

9.3 (1.2)

0.5–3.5

2.6

3.1

1.5–8.0

18:1 ω9

45.4 (4.1)

30.8

47.4

49.1

45.6

48.0

48.4 (4.6)

56–83

65.9

73.9

27–52

ω7

      

2.1 (0.3)

    

18:2 ω6

9.7 (3.6)

15.1

15.2

9.5

19.4

8.6

11.4 (3.7)

3.5–20

11.7

8.4

5–14

α18:3

0.7 (0.4)

0.3

0.9

1.1

1.4

0.4

2.4 (5.5)

<1.5

0.8

0.7

<1.5

18:4

    

     

20:0

0.9 (0.5)

   

0.1

0.2

0.2 (0.1)

 

0.5

  

20:1 ω9

     

0.3

0.3 (0.2)

 

0.3

  

20:4 ω6

≤0.5

          

20:5 ω3

           

22:6

           
  1. Footnotes to Appendix C (Parts 1 and 2)

Fatty acid composition of some triglyceride oils

Data = % w/w of total fatty acids from triglycerides (and waxes)

Fatty acid

Ostrich oils from

Muttonbird oils from

Neatsfoot oils

W.Africa9

S.Africa10

Poland11

NZ12

P.ten. 13

Yolla-113

Yolla-213

Tas(P)14

Tas(A)14

Horse15

Cattle16

X17

12:0

            

14:0

0.9

0.8

0.7 (0.1)

4.0

5.4

3.3

3.9

2.5

6.1

0.8

1.0

1.5

16:0

24.8

28.4

20.3 (0.9)

7.7

15.8

8.7

7.2

3.7

14.6

17.9

18.2

12.6

16:1 ω7

5.6

8.4

0.4 (0.1)

9.9

15.3

13.9

9.5

9.3

7.9

18.8

11.9

9.7

18:0

5.9

6.3

0.6 (0.1)

1.3

1.8

1.1

1.3

3.7

3.6

2.5

3.6

2.4

18:1 ω9

39.7

16.9

36.4 (1.2)

25.2

24.8

35.4

26.6

25.0

29.9

34.3

60.5

64.4

ω7

   

4.8

 

5.4

5.3

     

18:2 ω6

17.0

13.3

16.2 (1.4)

1.9

1.8

1.8

2.0

3.1

4.0

5.1

2.9

2.1

α18:3

3.8

4.9

16.0 (1.2)

0.5

0.9

0.5

4.0

1.7

16.9

0.7

2.0

18:4

   

2.3

2.6

1.9

2.5

     

20:0

0.3

   

0.2

  

0.1

  

0.1

 

20:1 ω9

   

2.9

5.5

4.4

2.7

0.1

5.5

   

20:4 ω6

  

6.7 (1.2)

0.7

1.2

 

0.7

1.8

2.1

   

20:5 ω3

   

14.0

7.5

5.3

13.5

13.2

6.1

   

22:6 ω3

   

10.2

9.1

3.0

10.9

5.7

14.4

   

1

Subcutaneous adipose tissue: mean value (±SD) for 137 South Africans, 3 racial groups (Krut and Bronte-Stewart 1964)

2

American Emu Association (Minnaar 1998; Craig-Schmidt 1998)

3

South Australia (Abimosleh et al. 2013)

4

Baramul Castlemaine, Vic

5

Kalaya, Wiluna W.A.

6

Pan-Australian Survey: mean values (±SD) for 48 oils (Turner 2014, unpublished)

7

Codex Committee on Fats and Oils (Gunstone et al. 1986)

8

Wardija = indigenous Maltese monoculture (reputed to be 2000 years old)

9

Kept in captivity UK (Gunstone and Russell 1954)

10

Abdominal fat (Sales 1999; Sales and Franken 1996)

11

Culled females, n = 6 (Horbanczuk et al. 2003)

12

Stewart Island, New Zealand

13

Bass Strait Islands, Tasmania (Warham et al. 1996) and recent harvesting 2011, 2013 (Y-1, Y-2)

14

P = proventricular (stomach) oil; A = adipose tissue (Clarke 1989; also see Woodward et al. 1995)

15

Washpool Stud, Qld. Oil aged 6 months at room temperature

16

Irish cattle (Hilditch 1956)

17

Source unspecified; also cite data from Argentina (Barr et al. 1970)

Appendix D

Some pharmacogenic fungi that transform emu fat (SSF)

Epicoccum purpurescens

Mucor BB12

Mucor BB16

Penicillium chrysogenum

Rhizopus stolonifer

Absidia sp

Alternaria alternata

Chaetomium globosum

Chaetomium sp

Cryptococcus albidus

Mucor BB13

Mucor BB14

Mucor BB15

Mucor BB18

Mucor Black

Mucor spp

Nigrospora sphaerica

Penicillium janczewski

Penicillium sclerotiorum

Rhodotorula mucilaginosa

Trichosporon pullulans

  1. MacGee and Turner (unpublished)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this chapter

Cite this chapter

Turner, A., Hancock, G., Wells, J., Whitehouse, M. (2015). Traditional Medicinal Oils Sourced from Birds: Anti-inflammatories and Potential Immunoregulants. In: Rainsford, K., Powanda, M., Whitehouse, M. (eds) Novel Natural Products: Therapeutic Effects in Pain, Arthritis and Gastro-intestinal Diseases. Progress in Drug Research, vol 70. Springer, Basel. https://doi.org/10.1007/978-3-0348-0927-6_5

Download citation

Publish with us

Policies and ethics