Skip to main content

Lecture on the abc Conjecture and Some of Its Consequences

  • Conference paper
  • First Online:
Book cover Mathematics in the 21st Century

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 98))

Abstract

The abc conjecture was proposed in the 1980s by J. Oesterlé and D.W. Masser. This simple statement implies a number of results and conjectures in number theory. We state this conjecture and list a few of the many consequences. This conjecture has gained increasing awareness in August 2012 when Shinichi Mochizuki released a series of four preprints containing a claim to a proof of the abc conjecture using his inter-universal Teichmüller theory: http://www.kurims.kyoto-u.ac.jp/~motizuki/top-english.html

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the tables of http://rekenmeemetabc.nl/Synthese_resultaten

  2. 2.

    Every integer is a cube or the sum of two, three, …nine cubes; every integer is also the square of a square, or the sum of up to nineteen such; and so forth. Similar laws may be affirmed for the correspondingly defined numbers of quantities of any like degree.

References

  1. Baker, A.: Logarithmic forms and the abc-conjecture. In: Number Theory (Eger, 1996), pp. 37–44. de Gruyter, Berlin (1998)

    Google Scholar 

  2. Baker, A.: Experiments on the abc-conjecture. Publ. Math. Debrecen 65(3–4), 253–260 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Balasubramanian, R., Shorey, T.N., Waldschmidt, M.: On the maximal length of two sequences of consecutive integers with the same prime divisors. Acta Math. Hungar. 54(3–4), 225–236 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beukers, F.: The Diophantine equation Ax p + By q = Cz r. Duke Math. J. 91(1), 61–88 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beukers, F., Stewart, C.L.: Neighboring powers. J. Number Theory 130(3), 660–679 (2010). Addendum: J. Number Theory 130(7), 1571 (2010)

    Google Scholar 

  6. Bilu, Y.F.: Catalan’s conjecture (after Mihăilescu). Astérisque 294, vii, 1–26, Séminaire Bourbaki – Volume 2002/2003 – Exposés 909–923 (2004)

    Google Scholar 

  7. Bombieri, E.: Roth’s Theorem and the abc-Conjecture. ETH, Zürich (1994, unpublished preprint)

    Google Scholar 

  8. Bombieri, E., Gubler, W.: Heights in Diophantine Geometry. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  9. Broberg, N. Some examples related to the abc-conjecture for algebraic number fields. Math. Comput. 69(232), 1707–1710 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Browkin, J.: A consequence of an effective form of the abc-conjecture. Colloq. Math. 82(1), 79–84 (1999)

    MATH  MathSciNet  Google Scholar 

  11. Browkin, J.: The abc-conjecture. In: Number Theory. Trends in Mathematics, pp. 75–105. Birkhäuser, Basel, (2000)

    Google Scholar 

  12. Browkin, J.: The abc-conjecture for algebraic numbers. Acta Math. Sin. (Engl. Ser.) 22(1), 211–222 (2006)

    Google Scholar 

  13. Browkin, J.: A weak effective abc-conjecture. Funct. Approx. Comment. Math. 39(part 1), 103–111 (2008)

    Google Scholar 

  14. Browkin, J., Brzeziński, J.: Some remarks on the abc-conjecture. Math. Comput. 62(206), 931–939 (1994)

    MATH  Google Scholar 

  15. Browkin, J., Filaseta, M., Greaves, G., Schinzel, A.: Squarefree values of polynomials and the abc-conjecture. In: Sieve Methods, Exponential Sums, and Their Applications in Number Theory (Cardiff, 1995). London Mathematical Society Lecture Note Series, vol. 237, pp. 65–85. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  16. Cohen, H.: Number Theory. Vol. II. Analytic and Modern Tools. Graduate Texts in Mathematics, vol. 240. Springer, New York (2007)

    Google Scholar 

  17. Danilov, L.V.: Letter to the editors: the Diophantine equation x 3y 2 = k and a conjecture of M. Hall.. Mat. Zametki 36(3), 457–458 (1984) (Mat. Zametki 32 (1982), no. 3, 273–275; MR0677595 (84c:10014))

    Google Scholar 

  18. Darmon, H., Granville, A.: On the equations z m = F(x, y) and Ax p + By q = Cz r. Bull. Lond. Math. Soc. 27(6), 513–543 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Elkies, N.D.: ABC implies Mordell. Int. Math. Res. Notices 7, 99–109 (1991)

    Article  MathSciNet  Google Scholar 

  20. Frey, G.: Links between elliptic curves and solutions of AB = C. J. Indian Math. Soc. (N.S.) 51, 117–145 (1987, 1988).

    Google Scholar 

  21. Frey, G.: Links between solutions of AB = C and elliptic curves. In: Number theory (Ulm, 1987). Lecture Notes in Mathematics, vol. 1380. Springer, New York, pp. 31–62 (1989)

    Google Scholar 

  22. Goldfeld, D.: Modular forms, elliptic curves and the abc-conjecture. In: A Panorama of Number Theory or the View from Baker’s Garden (Zürich, 1999), pp. 128–147. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  23. Goldfeld, D., Szpiro, L.: Bounds for the order of the Tate-Shafarevich group. Compositio Math. 97(1–2), 71–87 (1995). Special issue in honour of Frans Oort

    Google Scholar 

  24. Granville, A.: abc allows us to count squarefrees. Int. Math. Res. Notices 1998(19), 991–1009 (1998)

    Google Scholar 

  25. Granville, A., Stark, H.: ABC implies no “Siegel zeros” for L-functions of characters with negative discriminant.. Invent. Math. 139(3), 509–523 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Granville, A., Tucker, T.J.: It’s as easy as abc. Notices Am. Math. Soc. 49(10), 1224–1231 (2002). http://www.ams.org/notices/200210/fea-granville.pdf

  27. Graves, H., Ram Murty, M.: The abc conjecture and non-Wieferich primes in arithmetic progressions. J. Number Theory 133(6), 1809–1813 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hall, Jr., M.: The Diophantine equation x 3y 2 = k. In: Computers in Number Theory. Proceedings of the Science Research Council Atlas Symposium 2, Oxford, 1969, pp. 173–198. Academic, London (1971)

    Google Scholar 

  29. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University Press, Oxford (2008). Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles

    Google Scholar 

  30. Hu, P.-C., Yang, C.-C.: A generalized abc-conjecture over function fields. J. Number Theory 94(2), 286–298 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hu, P.-C., Yang, C.-C.: Distribution Theory of Algebraic Numbers. de Gruyter Expositions in Mathematics, vol. 45. Walter de Gruyter, Berlin (2008)

    Google Scholar 

  32. Hu, P.-C., Yang, C.-C.: Roth’s theorem and abc-conjecture. J. Shandong Univ. Nat. Sci. 44(8), 1–12 (2009). http://lxbwk.njournal.sdu.edu.cn/EN/volumn/volumn91.shtml.

  33. Kraus, A.: On the equation x p + y q = z r: a survey. Ramanujan J. 3(3), 315–333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Laishram, S., Shorey, T.N.: Baker’s explicit abc-conjecture and applications. Acta Arith. 155(4), 419–429 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lang, S.: Elliptic Curves: Diophantine Analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231. Springer, Berlin (1978)

    Google Scholar 

  36. Lang, S.: Old and new conjectured Diophantine inequalities. Bull. Am. Math. Soc. (N.S.) 23(1), 37–75 (1990)

    Google Scholar 

  37. Lang, S.: Die abc-Vermutung. Elem. Math. 48(3), 89–99 (1993)

    MATH  MathSciNet  Google Scholar 

  38. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002)

    Google Scholar 

  39. Langevin, M.: Cas d’égalité pour le théorème de Mason et applications de la conjecture (abc). C. R. Acad. Sci. Paris Sér. I Math. 317(5), 441–444 (1993)

    MATH  MathSciNet  Google Scholar 

  40. Langevin, M.: Sur quelques conséquences de la conjecture (abc) en arithmétique et en logique. Rocky Mt. J. Math. 26(3), 1031–1042 (1996). Symposium on Diophantine Problems (Boulder, 1994)

    Google Scholar 

  41. Langevin, M.: Imbrications entre le théorème de Mason, la descente de Belyi et les différentes formes de la conjecture (abc). J. Théor. Nombres Bordeaux 11(1), 91–109 (1999). Les XXèmes Journées Arithmétiques (Limoges, 1997)

    Google Scholar 

  42. Langevin, M.: Liens entre le théorème de Mason et la conjecture (abc). In: Number theory (Ottawa, ON, 1996). CRM Proceedings. Lecture Notes, vol. 19, pp. 187–213. American Mathematical Society, Providence (1999)

    Google Scholar 

  43. Mason, R.C.: Diophantine Equations over Function Fields. London Mathematical Society Lecture Note Series, vol. 96. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  44. Mason, R.C.: The study of Diophantine equations over function fields. In: New Advances in Transcendence Theory (Durham, 1986), pp. 229–247. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  45. Masser, D.W.: Open problems. In: Chen, W.W.L. (ed.) Proceedings of the Symposium on Analytic Number Theory. Imperial College, London (1985)

    Google Scholar 

  46. Masser, D.W.: On abc and discriminants. Proc. Amer. Math. Soc. 130(11), 3141–3150 (2002). (electronic)

    Google Scholar 

  47. Mauldin, R.: A generalization of Fermat’s last theorem: the Beal conjecture and prize problem. Notices Am. Math. Soc. 44(11), 1436–1437 (1997)

    MATH  MathSciNet  Google Scholar 

  48. Murty, R., Wong, S.: The abc conjecture and prime divisors of the Lucas and Lehmer sequences. In: Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 43–54. A K Peters, Natick (2002)

    Google Scholar 

  49. Narkiewicz, W.: Classical Problems in Number Theory. Monografie Matematyczne (Mathematical Monographs), vol. 62. Państwowe Wydawnictwo Naukowe (PWN), Warsaw (1986)

    Google Scholar 

  50. Nathanson, M.B.: Elementary Methods in Number Theory. Graduate Texts in Mathematics, vol. 195. Springer, New York (2000)

    Google Scholar 

  51. Nitaj, A.: The abc Conjecture Home Page. http://www.math.unicaen.fr/~nitaj/abc.html

  52. Nitaj, A.: La conjecture abc. Enseign. Math. (2) 42(1–2), 3–24 (1996)

    Google Scholar 

  53. Oesterlé, J.: Nouvelles approches du “théorème” de Fermat. Astérisque (1988), no. 161–162, Exp. No. 694, 4, 165–186 (1989), Séminaire Bourbaki, Vol. 1987/88

    Google Scholar 

  54. Philippon, P.: Quelques remarques sur des questions d’approximation diophantienne. Bull. Aust. Math. Soc. 59(2), 323–334 (1999). Addendum, idem. 61(1), 167–169 (2000)

    Google Scholar 

  55. Pillai, S.S.: Collected works of S. Sivasankaranarayana Pillai. In: Balasubramanian, R., Thangadurai, R. (eds.) Ramanujan Mathematical Society Collected Works Series, vol. 1. Ramanujan Mathematical Society, Mysore 2010

    Google Scholar 

  56. Ribenboim, P.: 13 Lectures on Fermat’s Last Theorem. Springer, New York (1979)

    Book  MATH  Google Scholar 

  57. Ribenboim, P.: Catalan’s Conjecture Are 8 and 9 the Only Consecutive Powers? Academic, Boston (1994)

    Google Scholar 

  58. Robert, O., Stewart, C.L., Tenenbaum,G.: A refinement of the abc conjecture. Bull. London Math. Soc. (2014). doi: 10.1112/blms/bdu069. First published online: September 2, 2014

  59. Robert, O., Tenenbaum, G.: Sur la répartition du noyau d’un entier. Indag. Math. 24, 802–914 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  60. Saradha, N.: Application of the explicit abc-conjecture to two Diophantine equations. Acta Arith. 151(4), 401–419 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  61. Schmidt, W.M.: Diophantine Approximations and Diophantine Equations. Lecture Notes in Mathematics, vol. 1467. Springer, Berlin (1991)

    Google Scholar 

  62. Shorey, T.N.: Exponential Diophantine equations involving products of consecutive integers and related equations. In: Number Theory. Trends in Mathematics, pp. 463–495. Birkhäuser, Basel (2000)

    Google Scholar 

  63. Shorey, T.N.: An equation of Goormaghtigh and Diophantine approximations. In: Currents Trends in Number Theory (Allahabad, 2000), pp. 185–197. Hindustan Book Agency, New Delhi (2002)

    Google Scholar 

  64. Silverman, J.H.: Wieferich’s criterion and the abc-conjecture. J. Number Theory 30(2), 226–237 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  65. Stewart, C.L.: On divisors of Lucas and Lehmer numbers. Acta Mathematica 211(2), 291–314 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  66. Stewart, C.L., Tijdeman, R. On the Oesterlé-Masser conjecture. Monatsh. Math. 102(3), 251–257 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  67. Stewart, C.L., Yu, K.: On the abc conjecture. Math. Ann. 291(2), 225–230 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  68. Stewart, C.L., Yu, K.: On the abc conjecture. II. Duke Math. J. 108(1), 169–181 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  69. Stothers, W.W.: Polynomial identities and Hauptmoduln. Quart. J. Math. Oxford Ser. (2) 32(127), 349–370 (1981)

    Google Scholar 

  70. Surroca, A.: Siegel’s theorem and the abc conjecture. Riv. Mat. Univ. Parma (7) 3*, 323–332 (2004)

    Google Scholar 

  71. Surroca, A.: Sur l’effectivité du théorème de Siegel et la conjecture abc. J. Number Theory 124(2), 267–290 (2007)

    Google Scholar 

  72. Tijdeman, R.: Exponential Diophantine equations 1986–1996. In: Number theory (Eger, 1996), pp. 523–539. de Gruyter, Berlin (1998)

    Google Scholar 

  73. van Frankenhuijsen, M.: The ABC conjecture implies Roth’s theorem and Mordell’s conjecture. Mat. Contemp. 16, 45–72 (1999). 15th School of Algebra (Portuguese) (Canela, 1998)

    Google Scholar 

  74. van Frankenhuijsen, M.: A lower bound in the abc conjecture. J. Number Theory 82(1), 91–95 (2000)

    Article  MathSciNet  Google Scholar 

  75. van Frankenhuijsen, M.: The ABC conjecture implies Vojta’s height inequality for curves. J. Number Theory 95(2), 289–302 (2002)

    Article  MathSciNet  Google Scholar 

  76. van Frankenhuijsen, M.: ABC implies the radicalized Vojta height inequality for curves. J. Number Theory 127(2), 292–300 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  77. van Frankenhuijsen, M.: About the ABC conjecture and an alternative. In Number Theory, Analysis and Geometry, pp. 169–180. Springer, New York (2012)

    Google Scholar 

  78. Vojta, P.: Diophantine Approximations and Value Distribution Theory. Lecture Notes in Mathematics, vol. 1239. Springer, Berlin (1987)

    Google Scholar 

  79. Vojta, P.: A more general abc conjecture. Int. Math. Res. Notices 21, 1103–1116 (1998)

    Article  MathSciNet  Google Scholar 

  80. Vojta, P.: On the ABC conjecture and Diophantine approximation by rational points. Am. J. Math. 122(4), 843–872 (2000). Correction: Am. J. Math. 123(2), 383–384 (2001)

    Google Scholar 

  81. Wooley, T.D.: Waring’s problem, the declining exchange rate between small powers, and the story of 13,792. University of Bristol. 19/11/2007 http://www.maths.bris.ac.uk/~matdw/bristol%20b16.pdf.

Further Resources

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Waldschmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this paper

Cite this paper

Waldschmidt, M. (2015). Lecture on the abc Conjecture and Some of Its Consequences. In: Cartier, P., Choudary, A., Waldschmidt, M. (eds) Mathematics in the 21st Century. Springer Proceedings in Mathematics & Statistics, vol 98. Springer, Basel. https://doi.org/10.1007/978-3-0348-0859-0_13

Download citation

Publish with us

Policies and ethics