Skip to main content

Some Classical Problems in Number Theory via the Theory of K3 Surfaces

  • Conference paper
  • First Online:
Mathematics in the 21st Century

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 98))

  • 1819 Accesses

Abstract

The theory of the elliptic modular function plays an important role in many situations in number theory. The elliptic modular function is obtained as a one-to-one correspondence between the parameter space of the family of elliptic curves (given by the Weierstrass normal form) and its period domain (i.e., the complex upper half plane). The K3 surface is considered to be a two-dimensional counterpart of the elliptic curve. So, if we consider a family of algebraic K3 surfaces with some normal form, we can obtain its modular function. We call it a K3 modular function (see [18, 19], some mathematical physicists call it a mirror map for K3 surfaces).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appell, P.: Sur les Fonctions hypergéométriques de plusieurs variables les polynomes d’Hermite et autres fonctions sphériques dans l’hyperspace. Gauthier-Villars, Paris (1925)

    Google Scholar 

  2. Borchardt, C.W.: Über das arithmetisch-geometrisch Mittel aus vier Elementen. Monatsber. Akad. Wiss. Berlin 53, 611–621 (1876)

    Google Scholar 

  3. Borwein, J.M., Borwein, P.B.: A cubic counterpart of Jacobi’s identity and the AGM. Trans. A.M.S. 323, 691–701 (1991)

    Google Scholar 

  4. Borwein, J.M., Borwein, P.B.: Pi and the AGM-A Study in Analytic Number Theory and Computational Complexity. Wiley, New York (1987)

    MATH  Google Scholar 

  5. Cohen, P.B.: Humbert surfaces and transcendence properties of automorphic functions. Rocky Mountain J. Math. 26, 987–1001 (1996). Symposium of Diophantine Problems, Boulder, (1994)

    Google Scholar 

  6. Gauss, C.F.: Hundert Theoreme über die neuen Transzendenten, 1818, Werke IIIer band. Georg Olms Verlag, Hildesheim/New York (1973)

    Google Scholar 

  7. Gauss, C.F.: Mathematisches Tagebuch 1796–1814. Ostwalds Kalassiker der exakte Wissenschaften 256. Geest und Portig, Leibzig (1976)

    Google Scholar 

  8. Igusa, J.: Theta Functions. Springer, Heidelberg/New York (1972)

    Book  MATH  Google Scholar 

  9. Jacobi, C.G.: Gesammelte Werke I. Chelsea, New York (1969)

    Google Scholar 

  10. Koike, K., Shiga, H.: Isogeny formulas for the Picard modular form and a three terms arithmetic geometric mean. J. Number Theory 124, 123–141 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Matsumoto, K., Shiga, H.: A variant of Jacobi type formula for Picard curves. J. Math. Soc. Jpn. 62, 1–15 (2010)

    Article  MathSciNet  Google Scholar 

  12. Matsumoto, K., Terasoma, T.: Arithmetic-geometric means for hyperelliptic curves and Calabi-Yau varieties. Int. J. Math. 21(7), 939–949 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Matsumoto, K., Terasoma, T.: Thomae type formula for K3 surfaces given by double covers of the projective plane branching along six lines. J. Reine U. Angew. Math. 669, 121–150 (2012)

    MATH  MathSciNet  Google Scholar 

  14. Mestre, J.: Moyenne de Borchardt et integrales elliptiques. C. R. Acad. Sci. Paris Ser. I Math. 313, 273–276 (1991)

    MATH  MathSciNet  Google Scholar 

  15. D. Mumford, Tata Lectures on Theta I. Birkhäuser, Boston/Basel/Stuttgard (1983)

    Book  MATH  Google Scholar 

  16. Picard, E.: Sur les fonctions de deux variables indépendantes analogues aux fonctions modulaires. Acta Math. 2, 114–135 (1883)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schneider, T.: Arithmetische Untersuchungen elliptischer Integrale. Math. Ann. 113, 1–13 (1937)

    Article  MathSciNet  Google Scholar 

  18. Shiga, H.: One attempt to the K3 modular function I. Ann. Sc. Norm. Sup. Pisa Ser. IV VI, 609–635 (1979)

    Google Scholar 

  19. Shiga, H., One attempt to the K3 modular function II. Ann. Sc. Norm. Sup. Pisa Ser. IV VIII, 157–182 (1981)

    Google Scholar 

  20. Shiga, H.: On the representation of the Picard modular function by θ constants I-II, Pub. R.I.M.S. Kyoto Univ. 24 311–360 (1988)

    Google Scholar 

  21. Shiga, H.: On the transcendency of the values of the modular function at algebraic points. Soc. Math. Fr. Asterisque 209, 293–305 (1992)

    MathSciNet  Google Scholar 

  22. Shiga, H., Wolfart, J.: Criteria for complex multiplication and transcendence properties of automorphic functions. J. Reine Angew. Math. Bd 463, 1–25 (1995)

    MATH  MathSciNet  Google Scholar 

  23. Wüstholz, G.: Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen. Ann. Math. 129, 501–507 (1989)

    Article  MATH  Google Scholar 

  24. Yoshida, M.: Fuchsian differential equations. Aspects of Mathematics, vol. E11. Friedr. Vieweg & Sohn, Braunschweig (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Shiga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this paper

Cite this paper

Shiga, H. (2015). Some Classical Problems in Number Theory via the Theory of K3 Surfaces. In: Cartier, P., Choudary, A., Waldschmidt, M. (eds) Mathematics in the 21st Century. Springer Proceedings in Mathematics & Statistics, vol 98. Springer, Basel. https://doi.org/10.1007/978-3-0348-0859-0_10

Download citation

Publish with us

Policies and ethics