Skip to main content

Fluorescent Methods to Study Transcription Initiation and Transition into Elongation

  • Chapter
  • First Online:
Fluorescent Methods for Molecular Motors

Part of the book series: Experientia Supplementum ((EXS,volume 105))

  • 2012 Accesses

Abstract

The DNA-dependent RNA polymerases induce specific conformational changes in the promoter DNA during transcription initiation. Fluorescence spectroscopy sensitively monitors these DNA conformational changes in real time and at equilibrium providing powerful ways to estimate interactions in transcriptional complexes and to assess how transcription is regulated by the promoter DNA sequence, transcription factors, and small ligands. Ensemble fluorescence methods described here probe the individual steps of promoter binding, bending, opening, and transition into the elongation using T7 phage and mitochondrial transcriptional systems as examples.

*These authors made equal contribution to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-AP:

2-Aminopurine fluorescence

bp:

Base pair

DNA:

Deoxyribonucleic acid

ds:

Double stranded

EC:

Elongation complex

FRET:

Förster resonance energy transfer

IC:

Initiation complex

K d :

Equilibrium dissociation constant

mt:

Mitochondrial

NTP:

Nucleoside triphosphate

RNA:

Ribonucleic acid

RNAP:

RNA polymerase

ss:

Single stranded

TAMRA:

Tetramethylrhodamine

References

  1. Arnold JJ, Smidansky ED, Moustafa IM, Cameron CE (2012) Human mitochondrial RNA polymerase: structure-function, mechanism and inhibition. Biochim Biophys Acta 1819(9–10):948–960. doi:10.1016/j.bbagrm.2012.04.002, S1874-9399(12)00093-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Martin CT, Esposito EA, Theis K, Gong P (2005) Structure and function in promoter escape by T7 RNA polymerase. Prog Nucleic Acid Res Mol Biol 80:323–347. doi:10.1016/S0079-6603(05)80008-X, S0079-6603(05)80008-X [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Tunitskaya VL, Kochetkov SN (2002) Structural-functional analysis of bacteriophage T7 RNA polymerase. Biochemistry (Mosc) 67(10):1124–1135, BCM67101360 [pii]

    Article  CAS  Google Scholar 

  4. Steitz TA (2004) The structural basis of the transition from initiation to elongation phases of transcription, as well as translocation and strand separation, by T7 RNA polymerase. Curr Opin Struct Biol 14(1):4–9. doi:10.1016/j.sbi.2004.01.006, S0959440X04000077 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Cheetham GM, Steitz TA (2000) Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. Curr Opin Struct Biol 10(1):117–123, S0959-440X(99)00058-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Kochetkov SN, Rusakova EE, Tunitskaya VL (1998) Recent studies of T7 RNA polymerase mechanism. FEBS Lett 440(3):264–267, S0014-5793(98)01484-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. McAllister WT (1993) Structure and function of the bacteriophage T7 RNA polymerase (or, the virtues of simplicity). Cell Mol Biol Res 39(4):385–391

    CAS  PubMed  Google Scholar 

  8. Young BA, Gruber TM, Gross CA (2002) Views of transcription initiation. Cell 109(4):417–420, S0092867402007523 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Hirata A, Murakami KS (2009) Archaeal RNA polymerase. Curr Opin Struct Biol 19(6):724–731. doi:10.1016/j.sbi.2009.10.006, S0959-440X(09)00156-0 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Borukhov S, Lee J (2005) RNA polymerase structure and function at lac operon. C R Biol 328(6):576–587. doi:10.1016/j.crvi.2005.03.007, doi:S1631-0691(05)00066-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Cramer P (2002) Multisubunit RNA polymerases. Curr Opin Struct Biol 12(1):89–97, S0959440X02002944 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Hsu LM (2009) Monitoring abortive initiation. Methods 47(1):25–36. doi:10.1016/j.ymeth.2008.10.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Patel SS, Bandwar RP (2003) Fluorescence methods for studying the kinetics and thermodynamics of transcription initiation. Methods Enzymol 370:668–686. doi:10.1016/S0076-6879(03)70055-X

    Article  CAS  PubMed  Google Scholar 

  14. Patel SS, Bandwar RP, Levin MK (2003) Transient-state kinetics and computational analysis of transcription initiation. In: Johnson KA (ed) Kinetic analysis of macromolecules a practical approach. Oxford University Press, New York, pp 87–129

    Google Scholar 

  15. Robinson A, van Oijen AM (2013) Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Nat Rev Microbiol 11(5):303–315. doi:10.1038/nrmicro2994

    Article  CAS  PubMed  Google Scholar 

  16. Martin CT, Újvári A, Liu C (2003) Evaluation of fluorescence spectroscopy methods for mapping melted regions of DNA along the transcription pathway. In: Sankar LA, Susan G (eds) Methods in enzymology, vol 371. Academic Press, pp 13–33. doi:http://dx.doi.org/10.1016/S0076-6879(03)71002-7

  17. Deshpande AP, Patel SS (2012) Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase. Biochim Biophys Acta 1819(9–10):930–938. doi:10.1016/j.bbagrm.2012.02.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bandwar RP, Jia Y, Stano NM, Patel SS (2002) Kinetic and thermodynamic basis of promoter strength: multiple steps of transcription initiation by T7 RNA polymerase are modulated by the promoter sequence. Biochemistry 41(11):3586–3595

    Article  CAS  PubMed  Google Scholar 

  19. Tang GQ, Deshpande AP, Patel SS (2011) Transcription factor-dependent DNA bending governs promoter recognition by the mitochondrial RNA polymerase. J Biol Chem 286(44):38805–38813. doi:10.1074/jbc.M111.261966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bandwar RP, Ma N, Emanuel SA, Anikin M, Vassylyev DG, Patel SS, McAllister WT (2007) The transition to an elongation complex by T7 RNA polymerase is a multistep process. J Biol Chem 282(31):22879–22886. doi:10.1074/jbc.M702589200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hsu LM (2002) Promoter clearance and escape in prokaryotes. Biochim Biophys Acta 1577(2):191–207

    Article  CAS  PubMed  Google Scholar 

  22. Tang GQ, Patel SS (2006) T7 RNA polymerase-induced bending of promoter DNA is coupled to DNA opening. Biochemistry 45(15):4936–4946. doi:10.1021/bi0522910

    Article  CAS  PubMed  Google Scholar 

  23. Jia Y, Kumar A, Patel SS (1996) Equilibrium and stopped-flow kinetic studies of interaction between T7 RNA polymerase and its promoters measured by protein and 2-aminopurine fluorescence changes. J Biol Chem 271(48):30451–30458

    Article  CAS  PubMed  Google Scholar 

  24. LiCata VJ, Wowor AJ (2008) Applications of fluorescence anisotropy to the study of protein-DNA interactions. Methods Cell Biol 84:243–262. doi:10.1016/S0091-679X(07)84009-X, S0091-679X(07)84009-X [pii]

    Article  CAS  PubMed  Google Scholar 

  25. Reppas NB, Wade JT, Church GM, Struhl K (2006) The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. Mol Cell 24(5):747–757. doi:10.1016/j.molcel.2006.10.030

    Article  CAS  PubMed  Google Scholar 

  26. Panov KI, Friedrich JK, Zomerdijk JC (2001) A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription. Mol Cell Biol 21(8):2641–2649. doi:10.1128/MCB.21.8.2641-2649.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Anderson BJ, Larkin C, Guja K, Schildbach JF (2008) Using fluorophore-labeled oligonucleotides to measure affinities of protein-DNA interactions. Methods Enzymol 450:253–272. doi:10.1016/S0076-6879(08)03412-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wang ZX (1995) An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. FEBS Lett 360(2):111–114

    Article  CAS  PubMed  Google Scholar 

  29. Toptygin D, Brand L (1995) Spectrabind user’s guide. The Johns Hopkins University, Baltimore, MD

    Google Scholar 

  30. Tang GQ, Patel SS (2006) Rapid binding of T7 RNA polymerase is followed by simultaneous bending and opening of the promoter DNA. Biochemistry 45(15):4947–4956. doi:10.1021/bi052292s

    Article  CAS  PubMed  Google Scholar 

  31. Schultz SC, Shields GC, Steitz TA (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science 253(5023):1001–1007

    Article  CAS  PubMed  Google Scholar 

  32. Yin YW, Steitz TA (2002) Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science 298(5597):1387–1395. doi:10.1126/science.1077464

    Article  CAS  PubMed  Google Scholar 

  33. Durniak KJ, Bailey S, Steitz TA (2008) The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science 322(5901):553–557. doi:10.1126/science.1163433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Rettig M, Germann MW, Wang S, Wilson WD (2013) Molecular basis for sequence-dependent induced DNA bending. Chembiochem 14(3):323–331. doi:10.1002/cbic.201200706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hudson BP, Quispe J, Lara-Gonzalez S, Kim Y, Berman HM, Arnold E, Ebright RH, Lawson CL (2009) Three-dimensional EM structure of an intact activator-dependent transcription initiation complex. Proc Natl Acad Sci U S A 106(47):19830–19835. doi:10.1073/pnas.0908782106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hardin AH, Sarkar SK, Seol Y, Liou GF, Osheroff N, Neuman KC (2011) Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification. Nucleic Acids Res 39(13):5729–5743. doi:10.1093/nar/gkr109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Noah JW, Park S, Whitt JT, Perutka J, Frey W, Lambowitz AM (2006) Atomic force microscopy reveals DNA bending during group II intron ribonucleoprotein particle integration into double-stranded DNA. Biochemistry 45(41):12424–12435. doi:10.1021/bi060612h

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ujvari A, Martin CT (2000) Evidence for DNA bending at the T7 RNA polymerase promoter. J Mol Biol 295(5):1173–1184. doi:10.1006/jmbi.1999.3418, S0022-2836(99)93418-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Kahn JD (1999) Methods for analyzing DNA bending. Methods Mol Biol 94:109–123. doi:10.1385/1-59259-259-7:109

    CAS  PubMed  Google Scholar 

  40. Akiyama T, Hogan ME (1997) Structural analysis of DNA bending induced by tethered triple helix forming oligonucleotides. Biochemistry 36(8):2307–2315. doi:10.1021/bi9624292

    Article  CAS  PubMed  Google Scholar 

  41. Dlakic M, Harrington RE (1998) Unconventional helical phasing of repetitive DNA motifs reveals their relative bending contributions. Nucleic Acids Res 26(18):4274–4279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Koo HS, Drak J, Rice JA, Crothers DM (1990) Determination of the extent of DNA bending by an adenine-thymine tract. Biochemistry 29(17):4227–4234

    Article  CAS  PubMed  Google Scholar 

  43. Tang GQ, Paratkar S, Patel SS (2009) Fluorescence mapping of the open complex of yeast mitochondrial RNA polymerase. J Biol Chem 284(9):5514–5522. doi:10.1074/jbc.M807880200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mukhopadhyay J, Mekler V, Kortkhonjia E, Kapanidis AN, Ebright YW, Ebright RH (2003) Fluorescence resonance energy transfer (FRET) in analysis of transcription-complex structure and function. Methods Enzymol 371:144–159. doi:10.1016/S0076-6879(03)71010-6

    Article  CAS  PubMed  Google Scholar 

  45. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76. doi:10.1146/annurev.biochem.77.070606.101543

    Article  CAS  PubMed  Google Scholar 

  46. Sorokina M, Koh HR, Patel SS, Ha T (2009) Fluorescent lifetime trajectories of a single fluorophore reveal reaction intermediates during transcription initiation. J Am Chem Soc 131(28):9630–9631. doi:10.1021/ja902861f

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tang GQ, Roy R, Ha T, Patel SS (2008) Transcription initiation in a single-subunit RNA polymerase proceeds through DNA scrunching and rotation of the N-terminal subdomains. Mol Cell 30(5):567–577. doi:10.1016/j.molcel.2008.04.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516. doi:10.1038/nmeth.1208, nmeth.1208 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kim H, Tang GQ, Patel SS, Ha T (2012) Opening-closing dynamics of the mitochondrial transcription pre-initiation complex. Nucleic Acids Res 40(1):371–380. doi:10.1093/nar/gkr736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Tang GQ, Roy R, Bandwar RP, Ha T, Patel SS (2009) Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase. Proc Natl Acad Sci USA 106(52):22175–22180. doi:10.1073/pnas.0906979106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Dragan AI, Privalov PL (2008) Use of fluorescence resonance energy transfer (FRET) in studying protein-induced DNA bending. Methods Enzymol 450:185–199. doi:10.1016/S0076-6879(08)03409-5

    Article  CAS  PubMed  Google Scholar 

  52. Clegg RM, Murchie AI, Zechel A, Lilley DM (1993) Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc Natl Acad Sci USA 90(7):2994–2998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Wu J, Parkhurst KM, Powell RM, Brenowitz M, Parkhurst LJ (2001) DNA bends in TATA-binding protein-TATA complexes in solution are DNA sequence-dependent. J Biol Chem 276(18):14614–14622. doi:10.1074/jbc.M004402200

    Article  CAS  PubMed  Google Scholar 

  54. Rippe K, Guthold M, von Hippel PH, Bustamante C (1997) Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. J Mol Biol 270(2):125–138

    Article  CAS  PubMed  Google Scholar 

  55. Rivetti C, Guthold M, Bustamante C (1999) Wrapping of DNA around the E.coli RNA polymerase open promoter complex. EMBO J 18(16):4464–4475. doi:10.1093/emboj/18.16.4464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Saluz HP, Jost JP (1993) Approaches to characterize protein-DNA interactions in vivo. Crit Rev Eukaryot Gene Expr 3(1):1–29

    PubMed  Google Scholar 

  57. Davis CA, Bingman CA, Landick R, Record MT Jr, Saecker RM (2007) Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc Natl Acad Sci USA 104(19):7833–7838. doi:10.1073/pnas.0609888104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Holstege FC, Timmers HT (1997) Analysis of open complex formation during RNA polymerase II transcription initiation using heteroduplex templates and potassium permanganate probing. Methods 12(3):203–211. doi:10.1006/meth.1997.0472

    Article  CAS  PubMed  Google Scholar 

  59. Kahl BF, Paule MR (2009) The use of diethyl pyrocarbonate and potassium permanganate as probes for strand separation and structural distortions in DNA. Methods Mol Biol 543:73–85. doi:10.1007/978-1-60327-015-1_6

    Article  CAS  PubMed  Google Scholar 

  60. Liu C, Martin CT (2001) Fluorescence characterization of the transcription bubble in elongation complexes of T7 RNA polymerase. J Mol Biol 308(3):465–475. doi:10.1006/jmbi.2001.4601

    Article  CAS  PubMed  Google Scholar 

  61. Bandwar RP, Patel SS (2001) Peculiar 2-aminopurine fluorescence monitors the dynamics of open complex formation by bacteriophage T7 RNA polymerase. J Biol Chem 276(17):14075–14082. doi:10.1074/jbc.M011289200

    CAS  PubMed  Google Scholar 

  62. Ujvari A, Martin CT (1996) Thermodynamic and kinetic measurements of promoter binding by T7 RNA polymerase. Biochemistry 35(46):14574–14582. doi:10.1021/bi961165g, bi961165g [pii]

    Article  CAS  PubMed  Google Scholar 

  63. Sastry SS, Ross BM (1996) A direct real-time spectroscopic investigation of the mechanism of open complex formation by T7 RNA polymerase. Biochemistry 35(49):15715–15725. doi:10.1021/bi960729d, bi960729d [pii]

    Article  CAS  PubMed  Google Scholar 

  64. Sullivan JJ, Bjornson KP, Sowers LC, deHaseth PL (1997) Spectroscopic determination of open complex formation at promoters for Escherichia coli RNA polymerase. Biochemistry 36(26):8005–8012. doi:10.1021/bi970363k

    Article  CAS  PubMed  Google Scholar 

  65. Stivers JT (1998) 2-Aminopurine fluorescence studies of base stacking interactions at abasic sites in DNA: metal-ion and base sequence effects. Nucleic Acids Res 26(16):3837–3844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Jean JM, Hall KB (2001) 2-Aminopurine fluorescence quenching and lifetimes: role of base stacking. Proc Natl Acad Sci USA 98(1):37–41. doi:10.1073/pnas.011442198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Rachofsky EL, Osman R, Ross JB (2001) Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence. Biochemistry 40(4):946–956

    Article  CAS  PubMed  Google Scholar 

  68. Ward DC, Reich E, Stryer L (1969) Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J Biol Chem 244(5):1228–1237

    CAS  PubMed  Google Scholar 

  69. Cheetham GM, Jeruzalmi D, Steitz TA (1999) Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature 399(6731):80–83. doi:10.1038/19999

    Article  CAS  PubMed  Google Scholar 

  70. Paratkar S, Deshpande AP, Tang GQ, Patel SS (2011) The N-terminal domain of the yeast mitochondrial RNA polymerase regulates multiple steps of transcription. J Biol Chem 286(18):16109–16120. doi:10.1074/jbc.M111.228023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Stano NM, Levin MK, Patel SS (2002) The +2 NTP binding drives open complex formation in T7 RNA polymerase. J Biol Chem 277(40):37292–37300. doi:10.1074/jbc.M201600200

    Article  CAS  PubMed  Google Scholar 

  72. Bandwar RP, Tang GQ, Patel SS (2006) Sequential release of promoter contacts during transcription initiation to elongation transition. J Mol Biol 360(2):466–483. doi:10.1016/j.jmb.2006.05.029

    Article  CAS  PubMed  Google Scholar 

  73. Guo Q, Nayak D, Brieba LG, Sousa R (2005) Major conformational changes during T7RNAP transcription initiation coincide with, and are required for, promoter release. J Mol Biol 353(2):256–270. doi:10.1016/j.jmb.2005.08.016

    Article  CAS  PubMed  Google Scholar 

  74. Spitalny P, Thomm M (2003) Analysis of the open region and of DNA-protein contacts of archaeal RNA polymerase transcription complexes during transition from initiation to elongation. J Biol Chem 278(33):30497–30505. doi:10.1074/jbc.M303633200

    Article  CAS  PubMed  Google Scholar 

  75. Kuzmine I, Martin CT (2001) Pre-steady-state kinetics of initiation of transcription by T7 RNA polymerase: a new kinetic model. J Mol Biol 305(3):559–566. doi:10.1006/jmbi.2000.4316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grants GM55310 and GM51966 to S.S.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita S. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Deshpande, A.P., Sultana, S., Patel, S.S. (2014). Fluorescent Methods to Study Transcription Initiation and Transition into Elongation. In: Toseland, C., Fili, N. (eds) Fluorescent Methods for Molecular Motors. Experientia Supplementum, vol 105. Springer, Basel. https://doi.org/10.1007/978-3-0348-0856-9_6

Download citation

Publish with us

Policies and ethics