Skip to main content

Fluorescence to Study the ATPase Mechanism of Motor Proteins

  • Chapter
  • First Online:
Book cover Fluorescent Methods for Molecular Motors

Part of the book series: Experientia Supplementum ((EXS,volume 105))

Abstract

This chapter provides an overview of different methodologies to dissect the ATPase mechanism of motor proteins. The use of ATP is fundamental to how these molecular engines work and how they can use the energy to perform various cellular roles. Rapid reaction and single-molecule techniques will be discussed to monitor reactions in real time through the application of fluorescence intensity, anisotropy and FRET. These approaches utilise fluorescent nucleotides and biosensors. While not every technique may be suitable for your motor protein, the different ways to determine the ATPase mechanism should allow a good evaluation of the kinetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATPγS:

Adenosine 5′-O-(3-thio)triphosphate

Deac:

Diethylaminocoumarin

dsDNA:

Double-stranded deoxyribonucleic acid

FRET:

Förster (or fluorescence) resonance energy transfer

k cat :

Catalytic turnover number

K d :

Equilibrium dissociation constant

K i :

Inhibition constant

K m :

Michaelis constant

Mant:

2′(3′)-O-(N-methylanthraniloyl)-

MDCC:

7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl)coumarin

MDCC-PBP:

(A197C) Phosphate-binding protein adduct with MDCC

NADH:

Nicotinamide adenine dinucleotide

Pi :

Inorganic phosphate

ssDNA:

Single-stranded deoxyribonucleic acid

References

  1. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W.H. Freeman, New York

    Google Scholar 

  2. De La Cruz EM, Wells AL, Rosenfeld SS, Ostap EM, Sweeney HL (1999) The kinetic mechanism of myosin V. Proc Natl Acad Sci USA 96(24):13726–13731

    Article  Google Scholar 

  3. Friel CT, Howard J (2011) The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization. EMBO J 30(19):3928–3939. doi:10.1038/emboj.2011.290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Toseland CP, Martinez-Senac MM, Slatter AF, Webb MR (2009) The ATPase cycle of PcrA helicase and its coupling to translocation on DNA. J Mol Biol 392(4):1020–1032. doi:10.1016/j.jmb.2009.07.071

    Article  CAS  PubMed  Google Scholar 

  5. Toseland CP, Powell B, Webb MR (2012) ATPase cycle and DNA unwinding kinetics of RecG helicase. PLoS One 7(6):e38270. doi:10.1371/journal.pone.0038270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Toseland CP, Webb MR (2013) ATPase mechanism of the 5’-3’ DNA helicase, RecD2: evidence for a pre-hydrolysis conformation change. J Biol Chem 288(35):25183–25193. doi:10.1074/jbc.M113.484667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bloemink MJ, Geeves MA (2011) Shaking the myosin family tree: biochemical kinetics defines four types of myosin motor. Semin Cell Dev Biol 22(9):961–967. doi:10.1016/j.semcdb.2011.09.015

    Article  CAS  PubMed  Google Scholar 

  8. Trentham DR, Eccleston JF, Bagshaw CR (1976) Kinetic analysis of ATPase mechanisms. Q Rev Biophys 9(2):217–281

    Article  CAS  PubMed  Google Scholar 

  9. Hiratsuka T (1983) New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim Biophys Acta 742(3):496–508

    Article  CAS  PubMed  Google Scholar 

  10. Webb MR, Corrie JE (2001) Fluorescent coumarin-labeled nucleotides to measure ADP release from actomyosin. Biophys J 81(3):1562–1569. doi:10.1016/S0006-3495(01)75810-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Webb MR, Reid GP, Munasinghe VR, Corrie JE (2004) A series of related nucleotide analogues that aids optimization of fluorescence signals in probing the mechanism of P-loop ATPases, such as actomyosin. Biochemistry 43(45):14463–14471. doi:10.1021/bi0486334

    Article  CAS  PubMed  Google Scholar 

  12. Toseland CP, Webb MR (2011) Fluorescent nucleoside triphosphates for single-molecule enzymology. Methods Mol Biol 778:161–174. doi:10.1007/978-1-61779-261-8_11

    Article  CAS  PubMed  Google Scholar 

  13. Toseland CP, Webb MR (2010) Fluorescence tools to measure helicase activity in real time. Methods 51(3):259–268. doi:10.1016/j.ymeth.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  14. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25(1):78–86. doi:10.1006/meth.2001.1217

    Article  CAS  PubMed  Google Scholar 

  15. James NG, Jameson DM (2014) Steady-state fluorescence polarization/anisotropy for the study of protein interactions. Methods Mol Biol 1076:29–42. doi:10.1007/978-1-62703-649-8_2

    Article  PubMed  Google Scholar 

  16. Eccleston JF, Martin SR, Schilstra MJ (2008) Rapid kinetic techniques. In: Correia JJ, Detrich III HW (eds) Methods in Cell biology, vol 84. Elsevier, Amsterdam

    Google Scholar 

  17. Batters C, Woodall KA, Toseland CP, Hundschell C, Veigel C (2012) Cloning, expression, and characterization of a novel molecular motor, Leishmania myosin-XXI. J Biol Chem 287(33):27556–27566. doi:10.1074/jbc.M112.381301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. De La Cruz EM, Ostap EM (2009) Kinetic and equilibrium analysis of the myosin ATPase. Methods Enzymol 455:157–192. doi:10.1016/S0076-6879(08)04206-7

    Article  Google Scholar 

  19. Brune M, Hunter JL, Howell SA, Martin SR, Hazlett TL, Corrie JE, Webb MR (1998) Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry 37(29):10370–10380. doi:10.1021/bi9804277

    Article  CAS  PubMed  Google Scholar 

  20. Shanker N, Bane SL (2008) Basic aspects of absorption and fluorescence spectroscopy and resonance energy transfer methods. Methods Cell Biol 84:213–242. doi:10.1016/S0091-679X(07)84008-8

    Article  CAS  PubMed  Google Scholar 

  21. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  22. Eccleston JF, Martin SR, Schilstra MJ (2008) Rapid kinetic techniques. Methods Cell Biol 84:445–477. doi:10.1016/S0091-679X(07)84015-5, S0091-679X(07)84015-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Barman TE, Bellamy SR, Gutfreund H, Halford SE, Lionne C (2006) The identification of chemical intermediates in enzyme catalysis by the rapid quench-flow technique. Cell Mol Life Sci 63(22):2571–2583. doi:10.1007/s00018-006-6243-z

    Article  CAS  PubMed  Google Scholar 

  24. Webb MR (1992) A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci USA 89(11):4884–4887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Charter NW, Kauffman L, Singh R, Eglen RM (2006) A generic, homogenous method for measuring kinase and inhibitor activity via adenosine 5’-diphosphate accumulation. J Biomol Screen 11(4):390–399. doi:10.1177/1087057106286829

    Article  CAS  PubMed  Google Scholar 

  26. Kunzelmann S, Webb MR (2009) A biosensor for fluorescent determination of ADP with high time resolution. J Biol Chem 284(48):33130–33138. doi:10.1074/jbc.M109.047118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kunzelmann S, Webb MR (2010) A fluorescent, reagentless biosensor for ADP based on tetramethylrhodamine-labeled ParM. ACS Chem Biol 5(4):415–425. doi:10.1021/cb9003173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Okoh MP, Hunter JL, Corrie JE, Webb MR (2006) A biosensor for inorganic phosphate using a rhodamine-labeled phosphate binding protein. Biochemistry 45(49):14764–14771. doi:10.1021/bi060960j

    Article  CAS  PubMed  Google Scholar 

  29. Oiwa K, Eccleston JF, Anson M, Kikumoto M, Davis CT, Reid GP, Ferenczi MA, Corrie JE, Yamada A, Nakayama H, Trentham DR (2000) Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives. Biophys J 78(6):3048–3071. doi:10.1016/S0006-3495(00)76843-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sakamoto T, Webb MR, Forgacs E, White HD, Sellers JR (2008) Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455(7209):128–132. doi:10.1038/nature07188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chisty LT, Toseland CP, Fili N, Mashanov GI, Dillingham MS, Molloy JE, Webb MR (2013) Monomeric PcrA helicase processively unwinds plasmid lengths of DNA in the presence of the initiator protein RepD. Nucleic Acids Res 41(9):5010–5023. doi:10.1093/nar/gkt194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fili N, Mashanov GI, Toseland CP, Batters C, Wallace MI, Yeeles JT, Dillingham MS, Webb MR, Molloy JE (2010) Visualizing helicases unwinding DNA at the single molecule level. Nucleic Acids Res 38(13):4448–4457. doi:10.1093/nar/gkq173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Fili N, Toseland CP, Dillingham MS, Webb MR, Molloy JE (2011) A single-molecule approach to visualize the unwinding activity of DNA helicases. Methods Mol Biol 778:193–214. doi:10.1007/978-1-61779-261-8_13

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. Toseland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Toseland, C.P. (2014). Fluorescence to Study the ATPase Mechanism of Motor Proteins. In: Toseland, C., Fili, N. (eds) Fluorescent Methods for Molecular Motors. Experientia Supplementum, vol 105. Springer, Basel. https://doi.org/10.1007/978-3-0348-0856-9_4

Download citation

Publish with us

Policies and ethics