Skip to main content

Rapid Reaction Kinetic Techniques

  • Chapter
  • First Online:
Fluorescent Methods for Molecular Motors

Part of the book series: Experientia Supplementum ((EXS,volume 105))

  • 1874 Accesses

Abstract

Most biochemical processes occur on sub-second time scales. Relaxation and rapid mixing methods allow reactions from microsecond time scales onwards to be monitored in real time. This chapter describes the instrumentation for these techniques and it discusses general topics of sample excitation and signal detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge-coupled device

Deac:

Diethylaminocoumarin

DWR:

Direct wave recording

FRET:

Förster (or fluorescence) resonance energy transfer

k cat :

Catalytic turnover number

K d :

Equilibrium dissociation constant

K m :

Michaelis constant

k obs :

Observed rate constant

LED:

Light-emitting diode

Mant:

2′(3′)-O-(N-Methylanthraniloyl)-

NATA:

N-Acetyl tryptophanamide

Pi :

Inorganic phosphate

PMT:

Photomultiplier tube

λ ex :

Excitation wavelength

References

  1. Eccleston JF, Martin SR, Schilstra MJ (2008) Rapid kinetic techniques. Methods Cell Biol 84:445–477. doi:10.1016/S0091-679X(07)84015-5, S0091-679X(07)84015-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  3. Shastry MC, Luck SD, Roder H (1998) A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale. Biophys J 74(5):2714–2721. doi:10.1016/S0006-3495(98)77977-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Pearson DS, Holtermann G, Ellison P, Cremo C, Geeves MA (2002) A novel pressure-jump apparatus for the microvolume analysis of protein-ligand and protein-protein interactions: its application to nucleotide binding to skeletal-muscle and smooth-muscle myosin subfragment-1. Biochem J 366(Pt 2):643–651. doi:10.1042/BJ20020462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Williams S, Causgrove TP, Gilmanshin R, Fang KS, Callender RH, Woodruff WH, Dyer RB (1996) Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35(3):691–697. doi:10.1021/bi952217p

    Article  CAS  PubMed  Google Scholar 

  6. Shanker N, Bane SL (2008) Basic aspects of absorption and fluorescence spectroscopy and resonance energy transfer methods. Methods Cell Biol 84:213–242. doi:10.1016/S0091-679X(07)84008-8

    Article  CAS  PubMed  Google Scholar 

  7. Toseland CP (2013) Fluorescent labeling and modification of proteins. J Chem Biol 6(3):85–95. doi:10.1007/s12154-013-0094-5

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ha T, Tinnefeld P (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63:595–617. doi:10.1146/annurev-physchem-032210-103340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Johnson KA (1986) Rapid kinetic analysis of mechanochemical adenosine triphosphatases. Methods Enzymol 134:677–705

    Article  CAS  PubMed  Google Scholar 

  10. LiCata VJ, Wowor AJ (2008) Applications of fluorescence anisotropy to the study of protein-DNA interactions. Methods Cell Biol 84:243–262. doi:10.1016/S0091-679X(07)84009-X

    Article  CAS  PubMed  Google Scholar 

  11. Toseland CP, Martinez-Senac MM, Slatter AF, Webb MR (2009) The ATPase cycle of PcrA helicase and its coupling to translocation on DNA. J Mol Biol 392(4):1020–1032. doi:10.1016/j.jmb.2009.07.071

    Article  CAS  PubMed  Google Scholar 

  12. Toseland CP, Webb MR (2010) Fluorescence tools to measure helicase activity in real time. Methods 51(3):259–268. doi:10.1016/j.ymeth.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  13. Toseland CP, Webb MR (2013) ATPase mechanism of the 5′-3′ DNA helicase, RecD2: evidence for a pre-hydrolysis conformation change. J Biol Chem 288(35):25183–25193. doi:10.1074/jbc.M113.484667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Muretta JM, Kyrychenko A, Ladokhin AS, Kast DJ, Gillispie GD, Thomas DD (2010) High-performance time-resolved fluorescence by direct waveform recording. Rev Sci Instrum 81(10):103101. doi:10.1063/1.3480647

    Article  PubMed Central  PubMed  Google Scholar 

  15. Muretta JM, Behnke-Parks WM, Major J, Petersen KJ, Goulet A, Moores CA, Thomas DD, Rosenfeld SS (2013) Loop L5 assumes three distinct orientations during the ATPase cycle of the mitotic kinesin Eg5: a transient and time-resolved fluorescence study. J Biol Chem 288(48):34839–34849. doi:10.1074/jbc.M113.518845

    Article  CAS  PubMed  Google Scholar 

  16. Bernasconi CF (1976) Relaxation kinetics. Academic, New York

    Google Scholar 

  17. Geeves MA, Pearson DS (2013) Relaxation methods. In: Roberts GCK (ed) Encyclopedia of biophysics. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. Toseland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Toseland, C.P., Geeves, M.A. (2014). Rapid Reaction Kinetic Techniques. In: Toseland, C., Fili, N. (eds) Fluorescent Methods for Molecular Motors. Experientia Supplementum, vol 105. Springer, Basel. https://doi.org/10.1007/978-3-0348-0856-9_3

Download citation

Publish with us

Policies and ethics