Skip to main content

The Role of Inflammation in Brain Cancer

  • Chapter
  • First Online:
Inflammation and Cancer

Abstract

Malignant brain tumors are among the most lethal of human tumors, with limited treatment options currently available. A complex array of recurrent genetic and epigenetic changes has been observed in gliomas that collectively result in derangements of common cell signaling pathways controlling cell survival, proliferation, and invasion. One important determinant of gene expression is DNA methylation status, and emerging studies have revealed the importance of a recently identified demethylation pathway involving 5-hydroxymethylcytosine (5hmC). Diminished levels of the modified base 5hmC is a uniform finding in glioma cell lines and patient samples, suggesting a common defect in epigenetic reprogramming. Within the tumor microenvironment, infiltrating immune cells increase oxidative DNA damage, likely promoting both genetic and epigenetic changes that occur during glioma evolution. In this environment, glioma cells are selected that utilize multiple metabolic changes, including changes in the metabolism of the amino acids glutamate, tryptophan, and arginine. Whereas altered metabolism can promote the destruction of normal tissues, glioma cells exploit these changes to promote tumor cell survival and to suppress adaptive immune responses. Further understanding of these metabolic changes could reveal new strategies that would selectively disadvantage tumor cells and redirect host antitumor responses toward eradication of these lethal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams S, Braidy N, Bessede A, Brew BJ, Grant R, Teo C, Guillemin GJ (2012) The kynurenine pathway in brain tumor pathogenesis. Cancer Res 72:5649–5657

    CAS  PubMed  Google Scholar 

  • Aksamitiene E, Kiyatkin A, Kholodenko BN (2011) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40:139–146

    Google Scholar 

  • Alelu-Paz R, Ashour N, Gonzalez-Corpas A, Ropero S (2012) DNA methylation, histone modifications, and signal transduction pathways: a close relationship in malignant gliomas pathophysiology. J Signal Transduct 1–8

    Google Scholar 

  • Ames BN, Gold LS, Willett WC (1995) The causes and prevention of cancer. Proc Natl Acad Sci USA 92:5258–5265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atai NA, Bansal M, Lo C, Bosman J, Tigchelaar W, Bosch KS, Jonker A, De Witt Hamer PC, Troost D, McCulloch CA, Everts V, Van Noorden CJ, Sodek J (2010) Osteopontin is up-regulated and associated with neutrophil and macrophage infiltration in glioblastoma. Immunology 132:39–48

    PubMed  Google Scholar 

  • Atukeren P, Kemerdere R, Kacira T, Hanimoglu H, Ozlen F, Yavuz B, Tanriverdi T, Gumustas K, Canbaz B (2010) Expressions of some vital molecules: glioblastoma multiforme versus normal tissues. Neurol Res 32:492–501

    CAS  PubMed  Google Scholar 

  • Badouard C, Masuda M, Nishino H, Cadet J, Favier A, Ravanat JL (2005) Detection of chlorinated DNA and RNA nucleosides by HPLC coupled to tandem mass spectrometry as potential biomarkers of inflammation. J Chromatogr B Analyt Technol Biomed Life Sci 827:26–31

    CAS  PubMed  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    CAS  PubMed  Google Scholar 

  • Barth MC, Ahluwalia N, Anderson TJ, Hardy GJ, Sinha S, Alvarez-Cardona JA, Pruitt IE, Rhee EP, Colvin RA, Gerszten RE (2009) Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions. J Biol Chem 284:19189–19195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartkova J, Hamerlik P, Stockhausen MT, Ehrmann J, Hlobilkova A, Laursen H, Kalita O, Kolar Z, Poulsen HS, Broholm H, Lukas J, Bartek J (2010) Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene 29:5095–5102

    CAS  PubMed  Google Scholar 

  • Beagles KE, Morrison PF, Heyes MP (1998) Quinolinic acid in vivo synthesis rates, extracellular concentrations, and intercompartmental distributions in normal and immune-activated brain as determined by multiple-isotope microdialysis. J Neurochem 70:281–291

    CAS  PubMed  Google Scholar 

  • Bello MJ, Resy JA (2006) The p53/Mdm2/p14ARF cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas. Cancer Genet Cytogenet 164:172–173

    CAS  PubMed  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenate and FG9041 have both competitive and non-competitive antagonist actions at excitatory amino acid receptors. Eur J Pharmacol 151:313–315

    CAS  PubMed  Google Scholar 

  • Bird AP, Wolffe AP (1999) Methylation-induced repression—belts, braces, and chromatin. Cell 99:451–454

    CAS  PubMed  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    CAS  PubMed  Google Scholar 

  • Bordelon YM, Mackenzie L, Chesselet MF (1999) Morphology and compartmental location of cells exhibiting DNA damage after quinolinic acid injections into rat striatum. J Comp Neurol 412:38–50

    CAS  PubMed  Google Scholar 

  • Braidy N, Grant R, Brew BJ, Adams S, Jayasena T, Guillemin GJ (2009) Effects of kynurenine pathway metabolites on intracellular NAD synthesis and cell death in human primary astrocytes and neurons. Int J Tryptophan Res 2:61–69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burdzy A, Noyes KT, Valinluck V, Sowers LC (2002) Synthesis of stable-isotope enriched 5-methylpyrimidines and their use as probes of base reactivity in DNA. Nucleic Acids Res 30:4068–4074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Google Scholar 

  • CBTRUS (2011) Statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2007. http://www.cbtrus.org/2011-NPCR-SEER/WEB-0407-Report-3-3-2011.pdf

  • Cecener G, Tunca B, Egeli U, Bekar A, Tezcan G, Erturk E, Bayram N, Tolunay S (2012) The promoter hypermethylation status of GATA6, MGMT and FHIT in glioblastoma. Cell Mol Neurobiol 32:237–244

    CAS  PubMed  Google Scholar 

  • Charles N, Holland EC (2010) The perivascular niche microenvironment in brain tumor progression. Cell Cycle 9:3012–3021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2012) The brain tumor microenvironment. Glia 60:502–514

    PubMed  Google Scholar 

  • Chen ZX, Riggs AD (2011) DNA methylation and demethylation in mammals. J Biol Chem 286:18347–18353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, McKay RM, Parada LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149:36–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiarugi A, Calvani M, Meli E, Traggiai E, Moroni F (2001a) Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J Neuroimmunol 120:190–198

    CAS  PubMed  Google Scholar 

  • Chiarugi A, Meli E, Moroni F (2001b) Similarities and differences in the neuronal death processes activated by 3OH-kynurenine and quinolinic acid. J Neurochem 77:1310–1318

    CAS  PubMed  Google Scholar 

  • Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, Broniscer A, Ellison DW, Baker SJ (2011) Cooperativity within and among Pten, p53 and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell 19:305–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciembroniewicz J, Kolar O (1967) Eosinophilic response in glioblastoma tissue culture after addition of autologous lymphocytes. Science 157:1054–1055

    CAS  PubMed  Google Scholar 

  • Cortázar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, Wirz A, Schuermann D, Jacobs AL, Siegrist F, Steinacher R, Jiricny J, Bird A, Schär P (2011) Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470:419–423

    PubMed  Google Scholar 

  • Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, Le Coz M, Devarajian K, Wessels A, Soprano D, Abramowitz LK, Bartolomei MS, Rambow F, Bassi MR, Fanciulli M, Renner C, Klein-Szanto AJ, Matsumoto Y, Kobi D, Davidson I, Alberti C, Larue L, Bellacosa A (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146:67–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costello JF, Berger MS, Huang HS, Cavenee WK (1996) Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 56:2405–2410

    CAS  PubMed  Google Scholar 

  • Croitoru-Lamoury J, Lamoury FM, Caristo M, Suzuki K, Walker D, Takikawa O, Taylor R, Brew BJ (2011) Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS One 16:e14698

    Google Scholar 

  • Curran CS, Bertics PJ (2012) Eosinophils in glioblastoma biology. J Neuroinflammation 9:11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curran CS, Evans MD, Bertics PJ (2011) GM-CSF production by glioblastoma cells has a functional role in eosinophil survival, activation, and growth factor production for enhanced tumor cell proliferation. J Immunol 187:1254–1263

    CAS  PubMed Central  PubMed  Google Scholar 

  • da Costa NM, Hautefeuille A, Cros MP, Melendez ME, Waters T, Swann P, Hainaut P, Pinto LF (2012) Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53. Cell Cycle 11:4570–4578

    PubMed Central  PubMed  Google Scholar 

  • de Groot J, Sontheimer H (2011) Glutamate and the biology of gliomas. Glia 59:1181–1189

    PubMed Central  PubMed  Google Scholar 

  • Di Vinci A, Casciano I, Marasco E, Banelli B, Ravetti GL, Borzi L, Brigati C, Forlani A, Dorcaratto A, Allemanni G, Zona G, Spaziante R, Gohlke H, Gardin G, Merlo DF, Mantovani V, Romani M (2012) Quantitative methylation analysis of HOXA3, 7, 9, and 10 genes in glioma: association with tumor WHO grade and clinical outcome. J Cancer Res Clin Oncol 138:35–47

    PubMed  Google Scholar 

  • Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC (2012) Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 26:756–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ekici M, Keim A, Rössler OG, Hohl M, Thiel G (2012) Chromatin structure and expression of the AMPA receptor subunit Glur2 in human glioma cells: major regulatory role of REST and Sp1. J Cell Biochem 113:528–543

    CAS  PubMed  Google Scholar 

  • Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354

    CAS  PubMed  Google Scholar 

  • Forrest CM, Youd P, Kennedy A, Gould SR, Darlington LG, Stone TW (2002) Purine, kynurenine, neopterin and lipid peroxidation levels in inflammatory bowel disease. J Biomed Sci 9:436–442

    CAS  PubMed  Google Scholar 

  • Fossati G, Ricevuti G, Edwards SW, Walker C, Dalton A, Rossi ML (1999) Neutrophil infiltration into human gliomas. Acta Neuropathol 98:349–354

    CAS  PubMed  Google Scholar 

  • Fueyo J, Gomez-Mazano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, Shi Y, Levin VA, Yung WK, Kyritsis AP (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19:2–12

    CAS  PubMed  Google Scholar 

  • Galia A, Calogero AE, Condorelli R, Fraggetta F, La Corte A, Ridolfo F, Bosco P, Castiglione R, Salemi M (2012) PARP-1 protein expression in glioblastoma multiforme. Eur J Histochem 56:e9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Globisch D, Munzel M, Muller M, Michalkas S, Wagner M, Koch S, Bruckl T, Biel M, Carell T (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goellner EM, Grimme B, Brown AR, Lin YC, Wang XH, Sugrue KF, Mitchell L, Trivedi RN, Tang JB, Sobol RW (2011) Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair. Cancer Res 71:2308–2317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gramatzki D, Pantazis G, Schittenhelm J, Tabatabai G, Köhle C, Wick W, Schwarz M, Weller M, Tritschler I (2009) Aryl hydrocarbon receptor inhibition downregulates the TGF-beta/smad pathway in human glioblastoma cells. Oncogene 28:2593–2605

    CAS  PubMed  Google Scholar 

  • Grant RS, Kapoor V (1998) Murine glial cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates. J Neurochem 70:1759–1763

    CAS  PubMed  Google Scholar 

  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878

    CAS  PubMed  Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:842–853

    CAS  PubMed  Google Scholar 

  • Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27:12884–12892

    CAS  PubMed  Google Scholar 

  • Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, Toubaji A, Argani P, Iacobuzio-Donahue C, Nelson WG, Netto GJ, De Marzo AM, Yegnasubramanian S (2011) Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2:627–637

    PubMed Central  PubMed  Google Scholar 

  • He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herring JL, Rogstad DK, Sowers LC (2009) Enzymatic methylation of DNA in cultured human cells studied by stable isotope incorporation and mass spectrometry. Chem Res Toxicol 22:1060–1068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996) Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 320:595–597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiraku Y (2010) Formation of 8-nitroguanine, a nitrative DNA lesion, in inflammation-related carcinogenesis and its significance. Environ Health Prev Med 15:63–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holtze M, Mickiené A, Atlas A, Lindquist L, Schwieler L (2012) Elevated cerebrospinal fluid kynurenic acid levels in patients with tick-borne encephalitis. J Intern Med 272:394–401

    CAS  PubMed  Google Scholar 

  • Huang J, Chen K, Gong W, Zhou Y, Le Y, Bian X, Wang JM (2008) Receptor “hijacking” by malignant glioma cells: a tactic for tumor progression. Cancer Lett 267:254–261

    CAS  PubMed  Google Scholar 

  • Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331

    CAS  PubMed  Google Scholar 

  • Huttner A (2012) Overview of primary brain tumors. Pathologic classification, epidemiology, molecular biology, and prognostic markers. Hematol Oncol Clin North Am 26:715–732

    PubMed  Google Scholar 

  • Huysentruyt LC, Akgoc Z, Seyfried TN (2011) Hypothesis: are neoplastic macrophages/microglia present in glioblastoma multiforme? ASN Neuro 3:183–193

    CAS  Google Scholar 

  • Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, Saito N, Tsuzuki K, Okado H, Miwa A, Nakazato Y, Ozawa S (2007) Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci 27:7987–8001

    CAS  PubMed  Google Scholar 

  • Jiang Z, Hu J, Li X, Jiang Y, Zhou W, Lu D (2006) Expression analyses of 27 DNA repair genes in astrocytoma by TaqMan low-density array. Neurosci Lett 409:112–117

    PubMed  Google Scholar 

  • Jin SG, Jiang Y, Qui R, Rauch TA, Wang Y, Schackert G, Krex D, Lu Q, Pfeifer GP (2011) 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 71:7360–7365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang JI, Sowers LC (2008) Examination of hypochlorous acid-induced damage to cytosine residues in a CpG dinucleotide in DNA. Chem Res Toxicol 21:1211–1218

    CAS  PubMed  Google Scholar 

  • Kim YH, Pierscianek D, Mittlebronn M, Vital A, Mariani L, Hassleblatt M, Oghaki H (2011) TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J Clin Pathol 64:850–852

    CAS  PubMed  Google Scholar 

  • Kleijn A, Chen JW, Buhrman JS, Wojtkiewicz GR, Iwamoto Y, Lamfers ML, Stemmer-Rachamimov AO, Rabkin SD, Weissleder R, Martuza RL, Fulci G (2011) Distinguishing inflammation from tumor and peritumoral edema by myeloperoxidase magnetic resonance imaging. Clin Cancer Res 17:4484–4493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    CAS  PubMed  Google Scholar 

  • Kominsky SL, Subramaniam PS, Johnson HM, Torres BA (2010) Inhibitory effects of IFN-gamma and acyclovir on the glioblastoma cell cycle. J Interferon Cytokine Res 20:463–469

    Google Scholar 

  • Kraus TF, Globisch D, Wagner M, Eigenbrod S, Widmann D, Munzel M, Muller M, Pfaffender T, Hackner B, Feiden W, Schuller U, Carell T, Kretzschmar HA (2012) Low values of 5-hydroxymethylcytosine (5hmC), the “sixth base”, are associated with anaplasia in human brain tumors. Int J Cancer 131:1577–1590

    CAS  PubMed  Google Scholar 

  • Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lao VV, Herring JL, Kim CH, Darwanto A, Soto U, Sowers C (2009) Incorporation of 5-chlorocytosine into mammalian DNA results in heritable gene silencing and altered cytosine methylation patterns. Carcinogenesis 30:886–893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lao VV, Darwanto A, Sowers LC (2010) Impact of base analogues within a CpG dinucleotide on the binding of DNA by the methyl-binding domain of MeCP2 and methylation by DNMT1. Biochemistry 49:10228–10236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leaver KR, Reynolds A, Bodard S, Guilloteau D, Chalon S, Kassiou M (2012) Effects of translocator protein (18 kDa) ligands on microglial activation and neuronal death in the quinolinic-acid-injected rat striatum. ACS Chem Neurosci 3:114–119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis JG, Adams DO (1987) Inflammation, oxidative DNA damage, and carcinogenesis. Environ Health Perspect 76:19–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linos E, Raine T, Alonso A, Michaud D (2007) Atopy and risk of brain tumors: a meta-analysis. J Natl Cancer Inst 99:1544–1550

    PubMed  Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    CAS  PubMed  Google Scholar 

  • Liu Y, Jiang W, Liu J, Zhao S, Xiong J, Mao Y, Wang Y (2012) IDH1 mutations inhibit multiple α-ketoglutarate-dependent dioxygenase activities in astroglioma. J Neurooncol 109:253–260

    CAS  PubMed  Google Scholar 

  • Lonkar P, Dedon PC (2011) Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer 128:1999–2009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorent A, Mueller W, Urdangarin E, Lazcoz P, Lass U, von Deimling A, Castresana JS (2008) RASSF1A, BLU, NORE1A, PTEN, and MGMT expression and promoter methylation in gliomas and glioma cell lines and evidence of deregulated expression of de novo DNMTs. Brain Pathol 19:279–292

    Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumors of the central nervous system. Acta Neuropathol 114:97–109

    PubMed Central  PubMed  Google Scholar 

  • Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H (2007) Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 167:9463–9471

    Google Scholar 

  • Maki RA, Tyurin VA, Lyon RC, Hamilton RL, DeKosky ST, Kagan VE, Reynolds WF (2009) Aberrant expression of myeloperoxidase in astrocytes promotes phospholipid oxidation and memory deficits in a mouse model of Alzheimer disease. J Biol Chem 284:3158–3169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mándi Y, Vécsei L (2012) The kynurenine system and immunoregulation. J Neural Transm 119:197–209

    PubMed  Google Scholar 

  • Mangerich A, Knutson CG, Parry NM, Muthupalani S, Ye W, Prestwich E, Cui L, McFaline JL, Mobley M, Ge Z, Taghizadeh K, Wishnok JS, Wogan GN, Fox JG, Tannenbaum SR, Dedon PC (2012) Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc Natl Acad Sci USA 109:E1820–E1829

    PubMed Central  PubMed  Google Scholar 

  • Marcus HJ, Carpenter KL, Price SJ, Hutchinson PJ (2010) In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J Neurooncol 97:11–23

    CAS  PubMed  Google Scholar 

  • Martinez R (2012) Beyond genetics in glioma pathways: the ever-increasing crosstalk between epigenomic and genomic events. J Signal Transduct 1–9

    Google Scholar 

  • Martinez R, Esteller M (2010) The DNA methylome of glioblastoma multiforme. Neurobiol Dis 39:40–46

    CAS  PubMed  Google Scholar 

  • Martinez R, Martin-Subero JI, Rohde V, Kirsch M, Alaminos M, Fernandez AF, Ropero S, Schackert G, Esteller M (2009) A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics 4:255–264

    CAS  PubMed  Google Scholar 

  • Mellac S, Fazakerley GV, Sowers LC (1993) Structures of base pairs with 5-(hydroxymethyl)-2’-deoxyuridine in DNA determined by NMR spectroscopy. Biochemistry 32:7779–7786

    CAS  PubMed  Google Scholar 

  • Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H (2013) Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery. 19 Feb 2013 (Epub ahead of print)

    Google Scholar 

  • Miyazaki T, Moritake K, Yamada K, Hara N, Osago H, Shibata T, Akiyama Y, Tsuchiya M (2009) Indoleamine 2,3-dioxygenase as a new target for malignant glioma therapy: laboratory investigation. J Neurosurg 111:230–237

    CAS  PubMed  Google Scholar 

  • Moffett JR, Els T, Espey MG, Walter SA, Streit WJ, Namboodiri MA (1997) Quinolinate immunoreactivity in experimental rat brain tumors is present in macrophages but not in astrocytes. Exp Neurol 144:287–301

    CAS  PubMed  Google Scholar 

  • Mohr F, Dohner K, Buske C, Rawat VP (2011) TET genes: new players in DNA demethylation and important determinants for stemness. Exp Hematol 39:272–281

    CAS  PubMed  Google Scholar 

  • Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375:87–100

    CAS  PubMed  Google Scholar 

  • Mueller MM, Herold-Mende CC, Riede D, Lange M, Steiner HH, Fusenig NE (1999) Autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor in human gliomas with tumor progression. Am J Pathol 155:1557–1567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller T, Gessi M, Waha A, Isselstein LJ, Luxen D, Freihoff D, Freihoff J, Becker A, Simon M, Hammes J, Denkhaus D, Zur Muhlen A, Pietsch T, Waha A (2012) Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am J Pathol 181:675–683

    PubMed  Google Scholar 

  • Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158:638–651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munzel M, Globisch D, Bruckl T, Wagner M, Welzmiller V, Michalkis S, Muller M, Biel M, Carell T (2010) Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 49:5375–5377

    PubMed  Google Scholar 

  • Munzel M, Globisch D, Carell T (2011) 5-hydroxymethylcytosine, the sixth base of the genome. Angew Chem Int Ed Engl 50:6460–6468

    PubMed  Google Scholar 

  • Murat A, Migliavacca E, Hussain SF, Heimberger AB, Desbaillets I, Hamou MF, Ruegg C, Stupp R, Delorenzi M, Hegi ME (2009) Modulation of angiogenic and inflammatory response in glioblastoma by hypoxia. PLoS One 4:e5947

    PubMed Central  PubMed  Google Scholar 

  • Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter methylation of the RB1 gene in glioblastomas. Lab Invest 81:77–820

    CAS  PubMed  Google Scholar 

  • Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA 107:19961–19966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nitta M, Kozono D, Kennedy R, Stommel J, Ng K, Zinn PO, Kushwaha D, Kesari S, Inda MD, Wykosky J, Furnari F, Hoadley KA, Chin L, DePinho RA, Cavenee WK, D’Andrea A, Chen CC (2010) Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy. PLoS One 5:e10767

    PubMed Central  PubMed  Google Scholar 

  • Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K, The Cancer Genome Atlas Research Network (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obrenovitch TP (2001) Quinolinic acid accumulation during neuroinflammation. Does it imply excitotoxicity? Ann NY Acad Sci 939:1–10

    CAS  PubMed  Google Scholar 

  • Oh MC, Kim JM, Safaee M, Kaur G, Sun MZ, Kaur R, Celli A, Mauro TM, Parsa AT (2012) Overexpression of calcium-permeable glutamate receptors in glioblastoma derived brain tumor initiating cells. PLoS One 7:e47846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ooi SK, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133:1145–1148

    CAS  PubMed  Google Scholar 

  • Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203

    CAS  PubMed  Google Scholar 

  • Orr BA, Haffner MC, Nelson WG, Yegnasubramanian S, Eberhart CG (2012) Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma. PLoS One 7:e41036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan H, Wang H, Zhu L, Mao L, Qiao L, Su X (2012) The role of Nrf2 in migration and invasion of human glioma cell U251. World Neurosurg. 7 Nov 2011 (Epub ahead of print)

    Google Scholar 

  • Passera E, Campanini B, Rossi F, Casazza V, Rizzi M, Pellicciari R, Mozzarelli A (2011) Human kynurenine aminotransferase II–reactivity with substrates and inhibitors. FEBS J 278:1882–1900

    CAS  PubMed  Google Scholar 

  • Piao Y, Jiang H, Alemany R, Krasnykh V, Marini FC, Xu J, Alonso MM, Conrad CA, Aldape KD, Gomez-Manzano C, Fueyo J (2009) Oncolytic adenovirus retargeted to delta-EGFR induces selective antiglioma activity. Cancer Gene Ther 16:256–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Privat E, Sowers LC (1996) Photochemical deamination and demethylation of 5-methylcytosine. Chem Res Toxicol 9:745–750

    CAS  PubMed  Google Scholar 

  • Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K, Miller AH (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15:393–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC (2003) Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell 12:889–901

    CAS  PubMed  Google Scholar 

  • Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610

    CAS  PubMed  Google Scholar 

  • Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102:932–941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Revoltella RP, Menicagli M, Campani D (2011) Granulocyte-macrophage colony-stimulating factor as an autocrine survival-growth factor in human gliomas. Cytokine 57:347–359

    PubMed  Google Scholar 

  • Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA, Schlegel U, Reifenberger G (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096

    CAS  PubMed  Google Scholar 

  • Rossi ML, Hughes JT, Esri MM, Coakham HB, Brownell DB (1987) Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neurpathol 74:269–277

    CAS  Google Scholar 

  • Rusmintratip V, Sowers LC (2000) An unexpectedly high excision capacity for mispaired 5-hydroxymethyluracil in human cell extracts. Proc Natl Acad Sci USA 97:14183–14187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sahm F, Capper D, Pusch S, Balss J, Koch A, Langhans CD, Okun JG, von Deimling A (2011) Detection of 2-hydroxyglutarate in formalin-fixed paraffin-embedded glioma specimens by gas chromatography/mass spectrometry. Brain Path 22:1–6

    Google Scholar 

  • Sahm F, Oezen I, Opitz CA, Radlwimmer B, von Deimling A, Ahrendt T, Adams S, Bode HB, Guillemin GJ, Wick W, Platten M (2013) The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res. 2 Apr 2013 (Epub ahead of print)

    Google Scholar 

  • Saito K, Chen CY, Masana M, Crowley JS, Markey SP, Heyes MP (1993) 4-Chloro-3-hydroxyanthranilate, 6-chloro tryptophan and norharman attenuate quinolinic acid formation by interferon-gamma-stimulated monocytes (THP-1 cells). Biochem J 291:11–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schunemann DP, Grivicich I, Regner A, Leal LF, de Araújo DR, Jotz GP, Fedrigo CA, Simon D, da Rocha AB (2010) Glutamate promotes cell growth by EGFR signaling on U-87MG human glioblastoma cell line. Pathol Oncol Res 16:285–293

    CAS  PubMed  Google Scholar 

  • Schwarcz R, Pellicciari R (2012) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Google Scholar 

  • Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318

    CAS  PubMed  Google Scholar 

  • Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seiberling KA, Church CA, Herring J, Sowers LC (2012) Epigenetics of chronic rhinosinusitis and the role of the eosinophil. Int Forum Allergy Rhinol 2:80–84

    PubMed  Google Scholar 

  • Sen E (2011) Targeting inflammation-induced transcription factor activation: an open frontier for glioma therapy. Drug Discov Today 16:1044–1051

    CAS  PubMed  Google Scholar 

  • Shinawi T, Hill VK, Krex D, Schackert G, Gentle D, Morris MR, Wei W, Cruickshank G, Maher ER, Latif F (2013) DNA methylation profiles of long- and short-term glioblastoma survivors. Epigenetics 8:149–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sippel TR, White J, Nag K, Tsvankin V, Klaassen M, Kleinschmidt-DeMasters BK, Waziri A (2011) Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I. Clin Cancer Res 17:6992–7002

    CAS  PubMed  Google Scholar 

  • Söderlund J, Erhardt S, Kast RE (2010) Acyclovir inhibition of IDO to decrease tregs as a glioblastoma treatment adjunct. J Neuroinflammation 7:44

    PubMed Central  PubMed  Google Scholar 

  • Stegh AH, DePinho RA (2011) Beyond effector caspase inhibition: Bcl2L12 neutralizes p53 signaling in glioblastoma. Cell Cycle 10:33–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens EA, Mezrich JD, Bradfield CA (2009) The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 127:299–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stone TW, Behan WM (2007) Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist. J Neurosci Res 85:1077–1085

    CAS  PubMed  Google Scholar 

  • Tada M, Suzuki K, Yamakawa Y, Sawamura Y, Sakuma S, Abe H, van Meir E, de Tribolet N (1993) Human glioblastoma cells produce 77 amino acid interleukin-8 (IL-8(77)). J Neurooncol 16:25–34

    CAS  PubMed  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MML partner TET1. Science 324:930–935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tardy-Planechaud S, Fujimoto J, Lin SS, Sowers LC (1997) Solid phase synthesis and restriction endonuclease cleavage of oligooxynucleotides containing 5-(hydroxymethyl)-cytosine. Nucleic Acids Res 25:553–559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tornaletti S, Pfeifer GP (1995) Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene 10:1493–1499

    CAS  PubMed  Google Scholar 

  • Tsay JJ, Tchou-Wong KM, Greenberg AK, Pass H, Rom WN (2013) Aryl hydrocarbon receptor and lung cancer. Anticancer Res 33:1247–1256

    PubMed Central  PubMed  Google Scholar 

  • Tuzgen S, Hanimoglu H, Tanriverdi T, Kacira T, Sanus GZ, Atukeren P, Dashti R, Gumustas K, Canbaz B, Kaynar MY (2007) Relationship between DNA damage and total antioxidant capacity in patients with glioblastoma multiforme. Clin Oncol 19:177–181

    CAS  Google Scholar 

  • Ueki K, Ono Y, Henson JW, Efird JT, von Demling A, Louis DN (1996) CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56:150–153

    CAS  PubMed  Google Scholar 

  • Valinluck V, Sowers LC (2007a) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67:946–950

    CAS  PubMed  Google Scholar 

  • Valinluck V, Sowers LC (2007b) Inflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers. Cancer Res 67:5583–5586

    CAS  PubMed  Google Scholar 

  • Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nuleic Acids Res 32:4100–4108

    CAS  Google Scholar 

  • Valinluck V, Liu P, Kang JI Jr, Burdzy A, Sowers LC (2005) 5-halogenated pyrimidine lesions within a CpG sequence context mimic 5-methylcytosine by enhancing the binding of the methyl-CpG-binding domain of methyl-CpG-binding protein 2 (MeCP2). Nucleic Acids Res 33:3057–3064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vasovcak P, Krepelova A, Menigatti M, Puchmajerova A, Skapa P, Augustinakova A, Amann G, Wernstedt A, Jiricny J, Marra G, Wimmer K (2012) Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency. DNA Repair 11:616–623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vécsei L, Szalárdy L, Fülöp F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82

    PubMed  Google Scholar 

  • Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, Tobias AL, Han Y, Lesniak MS (2012) IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18:6110–6121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watson M, Roulston A, Bélec L, Billot X, Marcellus R, Bédard D, Bernier C, Branchaud S, Chan H, Dairi K, Gilbert K, Goulet D, Gratton MO, Isakau H, Jang A, Khadir A, Koch E, Lavoie M, Lawless M, Nguyen M, Paquette D, Turcotte E, Berger A, Mitchell M, Shore GC, Beauparlant P (2009) The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 29:5872–5888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ, Wick W, Hegi ME (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51

    CAS  PubMed  Google Scholar 

  • Whiteman M, Jenner A, Halliwell B (1997) Hypochlorous acid-induced base modifications in isolated calf thymus DNA. Chem Res Toxicol 10:1240–1246

    CAS  PubMed  Google Scholar 

  • Winterbourn CC, Kettle AJ (2000) Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radical Biol Med 29:403–409

    CAS  Google Scholar 

  • Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y, Zhao S, Ye D, Xiong Y, Guan KL (2012) Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressor. Genes Dev 26:1326–1338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie L, Poteet EC, Li W, Scott AE, Liu R, Wen Y, Ghorpade A, Simpkins JW, Yang SH (2010) Modulation of polymorphonuclear neutrophil functions by astrocytes. J Neuroinflammation 7:1–15

    Google Scholar 

  • Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang I, Han SJ, Sughrue ME, Tihan T, Parsa AT (2011a) Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: evidence of distinct immunological microenvironments that reflect tumor biology. J Neurosurg 115:505–511

    CAS  PubMed  Google Scholar 

  • Yang Y, Liu Y, Yao X, Ping Y, Jiang T, Liu Q, Xu S, Huang J, Mou H, Gong W, Chen K, Bian X, Wang JM (2011b) Annexin 1 released by necrotic human glioblastoma cells stimulates tumor cell growth through the formyl peptide receptor 1. Am J Pathol 179:1504–1512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391

    CAS  PubMed  Google Scholar 

  • Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, Weng Z, Rando OJ, Fazzio TG (2011) Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147:1498–1510

    CAS  PubMed Central  PubMed  Google Scholar 

  • You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22:9–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, DePinho RA (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1134

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence C. Sowers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Sowers, J.L., Johnson, K.M., Conrad, C., Patterson, J.T., Sowers, L.C. (2014). The Role of Inflammation in Brain Cancer. In: Aggarwal, B., Sung, B., Gupta, S. (eds) Inflammation and Cancer. Advances in Experimental Medicine and Biology, vol 816. Springer, Basel. https://doi.org/10.1007/978-3-0348-0837-8_4

Download citation

Publish with us

Policies and ethics