Skip to main content

The Boundedness of the Riesz Potential Operator from Generalized Grand Lebesgue Spaces to Generalized Grand Morrey Spaces

  • Conference paper
  • First Online:
Operator Theory, Operator Algebras and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 242))

Abstract

We introduce weighted generalized Grand Morrey spaces and prove that the boundedness of linear operators from the generalized Grand Lebesgue spaces to generalized Morrey spaces may be derived from their boundedness from classical weighted Lebesgue spaces into weighted Morrey spaces. As an application we prove a theorem on mapping properties of the Riesz potential operator from weighted generalized Grand Lebesgue spaces to weighted generalized Grand Morrey spaces with Muckenhoupt–Wheeden A p,q-weights, under some natural assumptions on the way how we generalize grand spaces.

Mathematics Subject Classification (2010). Primary 46E15; Secondary 42B35.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Adams, A note on Riesz potentials. Duke Math. J. 42(4) (1975), 765–778.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Capone and A. Fiorenza, On small Lebesgue spaces. J. Funct. Spaces Appl. 3 (2005), 73–89.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Di Fazio and M.A. Ragusa, Commutators and Morrey spaces. Bollettino U.M.I. 7(5-A) (1991), 323–332.

    Google Scholar 

  4. G. Di Fratta and A. Fiorenza, A direct approach to the duality of grand and small Lebesgue spaces. Nonlinear Anal. 70(7) (2009), 2582–2592,

    Article  MATH  MathSciNet  Google Scholar 

  5. Y. Ding and C.-C. Lin, Two-weight norm inequalities for the rough fractional integrals. Int. J. Math. Math. Sci. 25(8) (2001), 517–524.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Fiorenza, B. Gupta, and P. Jain, The maximal theorem in weighted grand Lebesgue spaces. Studia Math. 188(2) (2008), 123–133.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Giaquinta, Multiple integrals in the calculus of variations and non-linear elliptic systems. Princeton Univ. Press, 1983.

    Google Scholar 

  8. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. 2nd Edition, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  9. L. Greco, T. Iwaniec, and C. Sbordone, Inverting the p-harmonic operator. Manuscripta Math. 92 (1997), 249–258.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119 (1992), 129–143.

    Article  MATH  MathSciNet  Google Scholar 

  11. V. Kokilashvili, Boundedness criterion for the Cauchy singular integral operator in weighted grand Lebesgue spaces and application to the Riemann problem. Proc. A. Razmadze Math. Inst. 151 (2009), 129–133.

    MATH  MathSciNet  Google Scholar 

  12. V. Kokilashvili, The Riemann boundary value problem for analytic functions in the frame of grand L p) spaces. Bull. Georgian Natl. Acad. Sci. 4(1) (2010), 5–7.

    MATH  MathSciNet  Google Scholar 

  13. V. Kokilashvili and A. Meskhi, A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces. Georgian Math. J. 16(3) (2009), 547–551.

    MATH  MathSciNet  Google Scholar 

  14. V. Kokilashvili, A. Meskhi, and H. Rafeiro, Riesz type potential operators in generalized grand Morrey spaces. GeorgianMath. J. 20(1) (2013), 43–64.

    MATH  MathSciNet  Google Scholar 

  15. V. Kokilashvili and S. Samko, Boundedness of weighted singular integral operators on a Carleson curves in Grand Lebesgue spaces. In ICNAAM 2010: Intern. Conf. Numer. Anal. Appl. Math., AIP Confer. Proc., volume 1281 (2010), 490–493.

    Google Scholar 

  16. V. Kokilashvili and S. Samko, Boundedness of weighted singular integral operators in Grand Lebesgue spaces. Georgian Math. J. 18(2) (2011), 259–269.

    MATH  MathSciNet  Google Scholar 

  17. A. Meskhi, Criteria for the boundedness of potential operators in grand Lebesgue spaces, arXiv:1007.1185.

    Google Scholar 

  18. A. Meskhi, Maximal functions and singular integrals in Morrey spaces associated with grand Lebesgue spaces. Proc. A. Razmadze Math. Inst. 151 (2009), 139–143.

    MATH  MathSciNet  Google Scholar 

  19. A. Meskhi, Integral operators in maximal functions, potentials and singular integrals in grand Morrey spaces. Complex Var. Elliptic Equ., Doi.10.1080/ 17476933.2010.534793, 2011, 1–19.

    Google Scholar 

  20. C.B. Morrey. On the solutions of quasi-linear elliptic partial differential equations. Amer. Math. Soc. 43 (1938), 126–166.

    Article  MathSciNet  Google Scholar 

  21. B. Muckenhoupt and R.L. Wheeden, Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc. 192 (1974), 261–274.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Peetre, On the theory of \( \mathcal{L}_{p, \lambda} \) spaces. J. Funct. Anal. 4 (1969), 71–87.

    Google Scholar 

  23. H. Rafeiro, A note on boundedness of operators in grand grand Morrey spaces. Operator Theory: Advances and Applications 229 (2013), 349-356.

    MathSciNet  Google Scholar 

  24. N.G. Samko, Weighted Hardy and potential operators in Morrey spaces. J. Funct. Spaces Appl. 2012 (2012), Article ID 678171, doi: 10.1155/2012/678171.

  25. N.G. Samko, Weighted Hardy and singular operators in Morrey spaces. J. Math. Anal. Appl. 350(1) (2009), 56–72.

    Article  MATH  MathSciNet  Google Scholar 

  26. S.G. Samko and S.M. Umarkhadzhiev, On Iwaniec–Sbordone spaces on sets which may have infinite measure. Azerb. J. Math. 1(1) (2011), 67–84.

    MATH  MathSciNet  Google Scholar 

  27. Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures. Acta Math. Sin. (Engl. Ser.) 21(6) (2005), 1535–1544.

    Article  MATH  MathSciNet  Google Scholar 

  28. E.M. Stein and G. Weiss, Interpolation of operators with change of measures. Trans. Amer. Math. Soc. 87 (1958), 159–172.

    Article  MATH  MathSciNet  Google Scholar 

  29. S.M. Umarkhadzhiev, Riesz–Thorin–Stein–Weiss Interpolation Theorem in a Lebesgue–Morrey Setting. Operator Theory: Advances and Applications 229 (2013), 387–392.

    MathSciNet  Google Scholar 

  30. S.M. Umarkhadzhiev, A generalization of the notion of Grand Lebesgue space. Russian Math. (Iz. VUZ), to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salaudin Umarkhadzhiev .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor A.F. dos SantosM

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this paper

Cite this paper

Umarkhadzhiev, S. (2014). The Boundedness of the Riesz Potential Operator from Generalized Grand Lebesgue Spaces to Generalized Grand Morrey Spaces. In: Bastos, M., Lebre, A., Samko, S., Spitkovsky, I. (eds) Operator Theory, Operator Algebras and Applications. Operator Theory: Advances and Applications, vol 242. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0816-3_22

Download citation

Publish with us

Policies and ethics