Skip to main content

The Design of the Indacaterol Molecule

  • Chapter
  • First Online:
Indacaterol

Abstract

β2-Adrenoceptor agonists have been used as bronchodilators for the treatment of asthma and COPD for over a century. Throughout this period, β2-adrenoceptor agonists have continued to evolve to best meet the needs of the patient, with improvements having been made to the selectivity, route of administration and duration of effect. As the next step in the progression of this class of compound, ultra-long-acting inhaled β2-adrenoceptor agonists, suitable for once-daily dosing, have been targeted to provide a new gold standard in patient compliance. Indacaterol is the first of these agents to be approved for the treatment of COPD, having been designed by a rationale approach to deliver the optimal ultra-long-acting inhaled β2-adrenoceptor agonist profile. Indacaterol was designed following a lipophilicity-based hypothesis to maximise the retention of the compound in the airways, so as to be able to deliver the primary goal of 24 h bronchodilation following a single inhaled dose. Further evaluation then ensured the long duration of effect could be combined with the best overall profile with respect to potency, selectivity, onset of action and side-effect profile. Following the synthesis of a series of close analogues, in which all three regions of the pharmacophore were modified, indacaterol could be confirmed as the optimal compound from the series. Studies to better understand the mechanisms by which indacaterol achieves the observed pharmacological profile are discussed.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waldeck B (2002) β-Adrenoceptor agonists and asthma—100 years of development. Eur J Pharmacol 225:1–12

    Article  Google Scholar 

  2. Kemp JP, Meltzer EO (1990) β2-Adrenergic agonists—oral or aerosol for the treatment of asthma? J Asthma 27:149–157

    Article  PubMed  CAS  Google Scholar 

  3. Baur F, Beattie D, Beer D, Bentley D, Bradley M, Bruce I, Charlton SJ, Cuenoud B, Ernst R, Fairhurst RA, Faller B, Farr D, Keller T, Fozard JR, Fullerton J, Garman S, Hatto J, Hayden C, He H, Howes C, Janus D, Jiang Z, Lewis C, Loeuillet-Ritzler F, Moser H, Reilly J, Steward A, Sykes D, Tedaldi L, Trifilieff A, Tweed M, Watson S, Wissler E, Wyss D (2010) The identification of indacaterol as an ultralong-acting inhaled β2-adrenoceptor agonist. J Med Chem 53:3675–3684

    Article  PubMed  CAS  Google Scholar 

  4. Lotvall J (2001) Pharmacological similarities and differences between beta2-agonists. Respir Med 95:S7–S11

    Article  PubMed  Google Scholar 

  5. Frois C, Wu EQ, Ray S, Colice GL (2009) Inhaled corticosteroids or long-acting β-agonists alone or in fixed-dose combinations in asthma treatment: a systematic review of fluticasone/budesonide and formoterol/salmeterol. Clin Ther 31:2779–2803

    Article  PubMed  CAS  Google Scholar 

  6. Jacobsen JR (2011) Third-generation long-acting β2-adrenoceptor agonists: medicinal chemistry strategies employed in the identification of once-daily inhaled β2-adrenoceptor agonists. Future Med Chem 3:1607–1622

    Article  PubMed  CAS  Google Scholar 

  7. Matera MG, Cazzola M (2007) Ultra-long-acting β2-adrenoceptor agonists an emerging therapeutic option for asthma and COPD. Drugs 67:503–515

    Article  PubMed  CAS  Google Scholar 

  8. Cazzola M, Segreti A, Matera MG (2010) Novel bronchodilators in asthma. Curr Opin Pulm Med 16:6–12

    Article  PubMed  CAS  Google Scholar 

  9. Cazzola M, Matera MG (2008) Novel long-acting bronchodilators for COPD and asthma. Br J Pharmacol 155:291–299

    Article  PubMed  CAS  Google Scholar 

  10. Kikkawa H, Kanno K, Ikezawa K (1994) TA-2005, a novel long-acting, and selective beta-2 adrenoceptor agonist: characterisation of its in vivo bronchodilating action in guinea pigs and cats in comparison with other beta-2 agonists. Biol Pharm Bull 17:1047–1052

    Article  PubMed  CAS  Google Scholar 

  11. Bouyssou T, Casarosa P, Naline E, Pestel S, Konetzki I, Devillier P, Schnapp A (2010) Pharmacological characterisation of olodaterol, a novel inhaled β2-adrenoceptor agonist exerting a 24-hour-long duration of action in preclinical models. J Pharmacol Exp Ther 334:53–62

    Article  PubMed  CAS  Google Scholar 

  12. Jacobsen JR, Choi SK, Comds J, Fournier EJL, Klein U, Pfeiffer JW, Thomas GR, Yu C, Moran EJ (2012) A multivalent approach to the discovery of long-acting β2-adrenoceptor agonists for the treatment of asthma and COPD. Bioorg Med Chem Lett 22:1213–1218

    Article  PubMed  CAS  Google Scholar 

  13. Procopiou PA, Barrett VJ, Bevan NJ, Biggadike K, Box PC, Butchers PR, Coe DM, Conroy R, Emmons A, Ford AJ, Holmes DS, Horsley H, Kerr F, Li-Kwai-Cheung A-M, Looker BE, Mann IS, McLay IM, Morrison VS, Mutch PJ, Smith CE, Tomlin P (2010) Synthesis and structure-activity relationships of long-acting β2-adrenergic receptor agonists incorporating metabolic inactivation: an antedrug approach. J Med Chem 53:4522–4530

    Article  PubMed  CAS  Google Scholar 

  14. Puig Duran C, Crespo Crespo MI, Castro Palomino Laria JC, Gual Roig S, Navarro Romero E (2006) Preparation of 4-(2-amino-1-hydroxyethyl)phenol derivatives as agonists of the β2-adrenergic receptor. WO 06/122788

    Google Scholar 

  15. Glossop PA, Lane CAL, Price DA, Bunnage ME, Lewthwaite RA, James K, Brown AD, Yeadon M, Perros-Huguet C, Trevethick MA, Clarke NP, Webster R, Jones RM, Burrows JL, Feeder N, Taylor SCJ, Spence FJ (2010) Inhalation by design: novel ultra-long-acting β2-adrenoceptor agonists for inhaled once-daily treatment of asthma and chronic obstructive pulmonary disease that utilise a sulphonamide agonist head group. J Med Chem 53:6640–6652

    Article  PubMed  CAS  Google Scholar 

  16. Norman P (2009) Which of three structures is AZD-3199? WO-2008104790, WO-2008096112 and WO-2009096119. Expert Opin Ther Pat 19:1157–1183

    Article  PubMed  CAS  Google Scholar 

  17. Patil PN, Li C, Kumari V, Hieble JP (2008) Analysis of efficacy of chiral adrenergic agonists. Chirality 20:529–543

    Article  PubMed  CAS  Google Scholar 

  18. King P (2008) Role of arformoterol in the management of COPD. Int J Chron Obstruct Pulmon Dis 3:385–391

    PubMed  CAS  Google Scholar 

  19. Cote C, Pearle JL, Sharafkhaneh A, Spangenthal S (2009) Faster onset of action of formoterol versus salmeterol in patients with chronic obstructive pulmonary disease: a multicenter, randomized trial. Pulm Pharmacol Ther 22:44–49

    Article  PubMed  CAS  Google Scholar 

  20. White MV, Sander N (1999) Asthma from the perspective of the patient. J Allergy Clin Immunol 104:47–52

    Article  Google Scholar 

  21. Anderson GP, Lindén A, Rabe KF (1994) Why are long-acting β2-adrenoceptor agonists long-acting? Eur Respir J 7:569–578

    Article  PubMed  CAS  Google Scholar 

  22. Coleman RA, Johnson M, Nials AT, Vardey CJ (1996) Exosites: their current status and their relevance to the duration of action of long-acting β2-adrenoceptor agonists. Trends Pharmacol Sci 17:324–330

    Article  PubMed  CAS  Google Scholar 

  23. Deyrup MD, Nowicki ST, Richards NGJ, Otero DH, Harrsison JK, Baker SP (1999) Structure-affinity profile of 8-hydroxycarbostyril-based agonists that dissociate slowly from the β2-adrenoceptor. Naunyn Schmiedebergs Arch Pharmacol 359:168–177

    Article  PubMed  CAS  Google Scholar 

  24. Voss H-P, Donnell D, Bast A (1992) Atypical molecular pharmacology of a new long-acting β2-adrenoceptor agonist, TA 2005. Eur J Pharmacol 227:403–409

    Article  PubMed  CAS  Google Scholar 

  25. Rosethorne EM, Turner RJ, Fairhurst RA, Charlton SJ (2010) Efficacy is a contributing factor to the clinical onset of bronchodilation of inhaled beta(2)-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol 382:255–263

    Article  PubMed  CAS  Google Scholar 

  26. Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–73

    Article  PubMed  CAS  Google Scholar 

  27. Alikhani V, Beer D, Bentley D, Bruce I, Cuenoud BM, Fairhurst RA, Gedeck P, Haberthuer S, Hayden C, Janus D, Jordan L, Smithies K, Wissler E (2004) Long-chain formoterol analogues: an investigation into the effect of increasing amino-substituent chain length on the β2-adrenoceptor activity. Bioorg Med Chem Lett 14:4705–4710

    Article  PubMed  CAS  Google Scholar 

  28. Naline E, Trifilieff A, Fairhust RA, Advenier C, Molimard M (2007) Effect of indacaterol, a novel long-acting β2-agonist, on isolated human bronchi. Eur Respir J 29:575–581

    Article  PubMed  CAS  Google Scholar 

  29. Yoshizaki S, Tanimura K, Tamada S, Yabuuchi Y, Nakagawa K (1976) Sympathomimetic amines having a carbostyril nucleus. J Med Chem 19:1138–1142

    Article  PubMed  CAS  Google Scholar 

  30. Voss HP (1994) Long-acting β2-adrenoceptor agonists in asthma: molecular pharmacological aspects. Ph.D., thesis, VrijeUniversiteit, Amsterdam

    Google Scholar 

  31. Erös D, Kövesdi I, Örfi L, Takács-Novák K, Acsády G, Kéri G (2002) Reliability of logP predictions based on calculated molecular descriptors: a critical review. Curr Med Chem 9:1819–1829

    Article  PubMed  Google Scholar 

  32. Battram C, Charlton SJ, Cuenoud B, Dowling MR, Fairhurst RA, Farr D, Fozard JR, Leighton-Davies JR, Lewis CA, McEvoy L, Turner RJ, Trifilieff A (2006) In vitro and in vivo pharmacological characterization of 5-[(R)-2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-8-hydroxy-1H-quino lin-2-one (indacaterol), a novel inhaled beta(2) adrenoceptor agonist with a 24-h duration of action. J Pharmacol Exp Ther 317:762–770

    Article  PubMed  CAS  Google Scholar 

  33. Beattie D, Beer D, Bradley ME, Bruce I, Charlton SJ, Cuenoud BM, Fairhurst RA, Farr D, Fozard JR, Janus D, Rosethorne EM, Sandham DA, Sykes DA, Trifilieff A, Turner KL, Wissler E (2012) An investigation into the structure activity relationships associated with the systematic modification of the β2-adrenoceptor agonist indacaterol. Bioorg Med Chem Lett 22:6280–6285

    Article  PubMed  CAS  Google Scholar 

  34. Cuenoud B, Bruce I, Fairhurst RA, Beattie D (2000) Preparation of indanyl-substituted quinolinone derivatives as β2-adrenoceptor agonists. WO 00/075114

    Google Scholar 

  35. Kaiser C (1980) Chapter 13: Drugs affecting the respiratory system. ACS symposium series, 118:251–283

    Google Scholar 

  36. Pilcer G, Amighi K (2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 392:1–19

    Article  PubMed  CAS  Google Scholar 

  37. Beattie D, Bradley M, Brearley A, Charlton SJ, Cuenoud BM, Fairhurst RA, Gedeck P, Gosling M, Janus D, Jones D, Lewis C, McCarthy C, Oakman H, Stringer R, Taylor RJ, Tuffnell A (2010) A physical properties based approach for the exploration of a 4-hydroxybenzothiazolone series of β2-adrenoceptor agonists as inhaled long-acting bronchodilators. Bioorg Med Chem Lett 20:5302–5307

    Article  PubMed  CAS  Google Scholar 

  38. Austin RP, Barton P, Bonnert RV, Brown RC, Cage PA, Cheshire DR, Davis AM, Dougall IG, Ince F, Pairaudeau G, Young A (2003) QSAR and the rational design of long-acting dual D2-receptor/β2-adrenoceptor agonists. J Med Chem 46:3210–3220

    Article  PubMed  CAS  Google Scholar 

  39. Valko K, Du CM, Bevan CD, Reynolds DP, Abraham MH (2000) Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures. J Pharm Sci 89:1085–1096

    Article  PubMed  CAS  Google Scholar 

  40. Lombardi D, Cuenoud B, Kramer SD (2009) Lipid membrane interaction of indacaterol and salmeterol: do they influence their pharmacological properties? Eur J Pharm Sci 38:533–547

    Article  PubMed  CAS  Google Scholar 

  41. Halayko AJ, Tran T, Gosens R (2008) Phenotype and functional plasticity of airway smooth muscle: role of caveolae and caveolins. Proc Am Thorac Soc 5:80–88

    Article  PubMed  CAS  Google Scholar 

  42. Vauquelin G, Charlton SJ (2010) Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br J Pharmacol 161:488–508

    Article  PubMed  CAS  Google Scholar 

  43. Sykes DA, Charlton SJ (2012) Slow receptor dissociation is not a key factor in the duration of action of inhaled long acting β2-adrenoceptor agonists. Br J Pharmacol 165:2672–2683

    Article  PubMed  CAS  Google Scholar 

  44. Guhan AR, Cooper S, Oborne J, Lewis S, Bennett J, Tattersfield AE (2000) Systemic effects of formoterol and salmeterol: a dose-response comparison in healthy subjects. Thorax 55:650–656

    Article  PubMed  CAS  Google Scholar 

  45. Rabe KF, Lindén A (1997) Mechanisms of duration of action of inhaled long-acting β2-adrenoceptor agonists. In: Pauwels R, O’Byrne PM (eds) Lung biology in health and disease, vol 106, β2-agonists in asthma treatment. Dekker, New York, NY, pp 131–160

    Google Scholar 

  46. Dhillon S, Wagstaff AJ (2008) Ciclesonide nasal spray: in allergic rhinitis. Drugs 68:875–883

    Article  PubMed  CAS  Google Scholar 

  47. Zitt MJ (2005) Properties of the ideal corticosteroid therapy. Allergy Asthma Proc 26:173–182

    PubMed  CAS  Google Scholar 

  48. Rosenborg J, Larsson P, Tegnér K, Hallström G (1999) Mass balance and metabolism of {3H}formoterol in healthy men after combined IV and oral administration-mimicking inhalation. Drug Metab Dispos 27:1104–1116

    PubMed  CAS  Google Scholar 

  49. Reilly J, Etheridge D, Everatt B, Jiang Z, Aldcroft C, Wright P, Clemens I, Cox B, Press NJ, Watson S, Porter D, Springer C, Fairhurst RA (2011) Studies in drug albumin binding using HSA and RSA affinity methods. J Liq Chromatogr Relat Technol 34:317–327

    Article  CAS  Google Scholar 

  50. Yata N, Toyoda T, Murakami T, Nishiura A, Higashi Y (1990) Phosphatidylserine as a determinant for the tissue distribution of weakly basic drugs in rats. Pharm Res 7:1019–1025

    Article  PubMed  CAS  Google Scholar 

  51. Nishiura A, Murakami T, Higashi Y, Yata N (1988) Role of phosphatidylserine in the cellular and subcellular lung distribution of quinidine in rats. Pharm Res 5:209–213

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin A. Fairhurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Fairhurst, R.A., Charlton, S.J., Trifilieff, A. (2014). The Design of the Indacaterol Molecule. In: Trifilieff, A. (eds) Indacaterol. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0709-8_3

Download citation

Publish with us

Policies and ethics