Skip to main content

B-Cell Targeted Therapies in Systemic Sclerosis and Inflammatory Myopathies

  • Chapter
  • First Online:

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Systemic sclerosis (SSc) and idiopathic inflammatory myopathies (IIM) are autoimmune diseases with multisystem involvement. Of late, there is a tremendous interest around the role of B-cells in the early inflammation, autoimmunity, and subsequent fibrosis both in animal and human models. There have been promising results from B-cell depletion therapy in clinical trials in both SSc and IIM. This review will concentrate on the role of B-cells in pathogenesis and the potential of B-cell targeted therapy in SSc and IIM.

Dr. Khanna was supported by NIH/ NIAMS K24 AR063120.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agematsu K, Hokibara S, Nagumo H, Komiyama A (2000) CD27: a memory B-cell marker. Immunol Today 21:204–206

    PubMed  CAS  Google Scholar 

  • Aggarwal R, Oddis CV (2012) Inclusion body myositis: therapeutic approaches. Degener Neurol Neuromuscular Dis 2:43–52

    CAS  Google Scholar 

  • Aggarwal R, Reed AM, Ascherman DP, Barohn RJ, Feldman BM, Miller FW, Rider LG, Harris-Love M, Levesque MC, Oddis CV, and the RIM Study Group (2012) Clinical and serologic predictors of response in rituximab-treated refractory adult and juvenile dermatomyositis (DM) and adult polymyositis (PM) - the RIM Study. Arthritis Rheum 64(10 suppl):S682–S683

    Google Scholar 

  • Aggarwal R, Cassidy E, Fertig N, Koontz DC, Lucas M, Ascherman DP, Oddis CV (2013) Patients with non-Jo-1 anti-tRNA-synthetase autoantibodies have worse survival than Jo-1 positive patients. Ann Rheum Dis. doi:10.1136/annrheumdis-2012-201800

    PubMed  Google Scholar 

  • Aleksza M, Szegedi A, Antal-Szalmas P, Irinyi B, Gergely L, Ponyi A, Hunyadi J, Sipka S, Zeher M, Szegedi G, Danko K (2005) Altered cytokine expression of peripheral blood lymphocytes in polymyositis and dermatomyositis. Ann Rheum Dis 64:1485–1489

    PubMed  CAS  Google Scholar 

  • Arlet JB, Dimitri D, Pagnoux C, Boyer O, Maisonobe T, Authier FJ, Bloch-Queyrat C, Goulvestre C, Heshmati F, Atassi M, Guillevin L, Herson S, Benveniste O, Mouthon L (2006) Marked efficacy of a therapeutic strategy associating prednisone and plasma exchange followed by rituximab in two patients with refractory myopathy associated with antibodies to the signal recognition particle (SRP). Neuromuscul Disord 16:334–336

    PubMed  Google Scholar 

  • Asano N, Fujimoto M, Yazawa N, Shirasawa S, Hasegawa M, Okochi H, Tamaki K, Tedder TF, Sato S (2004) B lymphocyte signaling established by the CD19/CD22 loop regulates autoimmunity in the tight-skin mouse. Am J Pathol 165:641–650

    PubMed  CAS  Google Scholar 

  • Ascherman DP (2003) The role of Jo-1 in the immunopathogenesis of polymyositis: current hypotheses. Curr Rheumatol Rep 5:425–430

    PubMed  Google Scholar 

  • Baek A, Park HJ, Na SJ, Shim DS, Moon JS, Yang Y, Choi YC (2012) The expression of BAFF in the muscles of patients with dermatomyositis. J Neuroimmunol 249:96–100

    PubMed  CAS  Google Scholar 

  • Baraut J, Michel L, Verrecchia F, Farge D (2010) Relationship between cytokine profiles and clinical outcomes in patients with systemic sclerosis. Autoimmun Rev 10:65–73

    PubMed  CAS  Google Scholar 

  • Bielecki M, Kowal K, Lapinska A, Bernatowicz P, Chyczewski L, Kowal-Bielecka O (2010) Increased production of a proliferation-inducing ligand (APRIL) by peripheral blood mononuclear cells is associated with antitopoisomerase I antibody and more severe disease in systemic sclerosis. J Rheumatol 37:2286–2289

    PubMed  Google Scholar 

  • Bona C, Rothfield N (1994) Autoantibodies in scleroderma and tightskin mice. Curr Opin Immunol 6:931–937

    PubMed  CAS  Google Scholar 

  • Bosello S, De Santis M, Lama G, Spano C, Angelucci C, Tolusso B, Sica G, Ferraccioli G (2010) B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial. Arthritis Res Ther 12:R54

    PubMed  Google Scholar 

  • Bosello S, De Luca G, Tolusso B, Lama G, Angelucci C, Sica G, Ferraccioli G (2011) B cells in systemic sclerosis: a possible target for therapy. Autoimmun Rev 10:624–630

    PubMed  CAS  Google Scholar 

  • Bradshaw EM, Orihuela A, Mcardel SL, Salajegheh M, Amato AA, Hafler DA, Greenberg SA, O’Connor KC (2007) A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol 178:547–556

    PubMed  CAS  Google Scholar 

  • Broen JC, Bossini-Castillo L, Van Bon L, Vonk MC, Knaapen H, Beretta L, Rueda B, Hesselstrand R, Herrick A, Worthington J, Hunzelman N, Denton CP, Fonseca C, Riemekasten G, Kiener HP, Scorza R, Simeon CP, Ortego-Centeno N, Gonzalez-Gay MA, Airo P, Coenen MJ, Martin J, Radstake TR (2012) A rare polymorphism in the gene for Toll-like receptor 2 is associated with systemic sclerosis phenotype and increases the production of inflammatory mediators. Arthritis Rheum 64:264–271

    PubMed  CAS  Google Scholar 

  • Brulhart L, Waldburger JM, Gabay C (2006) Rituximab in the treatment of antisynthetase syndrome. Ann Rheum Dis 65:974–975

    PubMed  CAS  Google Scholar 

  • Chiu YE, Co DO (2011a) Juvenile dermatomyositis: immunopathogenesis, role of myositis-specific autoantibodies, and review of rituximab use. Pediatr Dermatol 28:357–367

    PubMed  Google Scholar 

  • Chiu YE, Co DO (2011b) Juvenile dermatomyositis: immunopathogenesis, role of myositis-specific autoantibodies, and review of rituximab use. Pediatr Dermatol 28:357–367

    PubMed  Google Scholar 

  • Chung L, Genovese MC, Fiorentino DF (2007) A pilot trial of rituximab in the treatment of patients with dermatomyositis. Arch Dermatol 143:763–767

    PubMed  CAS  Google Scholar 

  • Cooper MA, Willingham DL, Brown DE, French AR, Shih FF, White AJ (2007) Rituximab for the treatment of juvenile dermatomyositis: a report of four pediatric patients. Arthritis Rheum 56:3107–3111

    PubMed  CAS  Google Scholar 

  • Daoussis D, Liossis SN, Tsamandas AC, Kalogeropoulou C, Kazantzi A, Sirinian C, Karampetsou M, Yiannopoulos G, Andonopoulos AP (2010) Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology (Oxford) 49:271–280

    CAS  Google Scholar 

  • Daoussis D, Liossis SN, Tsamandas AC, Kalogeropoulou C, Paliogianni F, Sirinian C, Yiannopoulos G, Andonopoulos AP (2012) Effect of long-term treatment with rituximab on pulmonary function and skin fibrosis in patients with diffuse systemic sclerosis. Clin Exp Rheumatol 30:S17–S22

    PubMed  Google Scholar 

  • De Santis M, Bosello S, La Torre G, Capuano A, Tolusso B, Pagliari G, Pistelli R, Danza FM, Zoli A, Ferraccioli G (2005) Functional, radiological and biological markers of alveolitis and infections of the lower respiratory tract in patients with systemic sclerosis. Respir Res 6:96

    PubMed  Google Scholar 

  • De Visser M (2013) The efficacy of rituximab in refractory myositis: the jury is still out. Arthritis Rheum 65(2):303–306

    Google Scholar 

  • Deligny C, Goeb V, Dueymes M, Kahn V, Dehlinger V, Baptiste GJ, Amarof K, Arfi S (2011) Rituximab for patients with myopathy associated with anti-signal recognition particle antibodies: comment on the article by Valiyil et al. Arthritis Care Res (Hoboken) 63:460, author reply 461

    Google Scholar 

  • Dinh HV, Mccormack C, Hall S, Prince HM (2007) Rituximab for the treatment of the skin manifestations of dermatomyositis: a report of 3 cases. J Am Acad Dermatol 56:148–153

    PubMed  Google Scholar 

  • Duncan MR, Berman B (1991) Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. J Invest Dermatol 97:686–692

    PubMed  CAS  Google Scholar 

  • Endo L (2005) Use of rituximab in refractory juvenile dermatomyositis. Arthritis Rheum 52

    Google Scholar 

  • Famularo G, Giacomelli R, Alesse E, Cifone MG, Morrone S, Boirivant M, Danese C, Perego MA, Santoni A, Tonietti G (1989) Polyclonal B lymphocyte activation in progressive systemic sclerosis. J Clin Lab Immunol 29:59–63

    PubMed  CAS  Google Scholar 

  • Feldman BM, Wang E, Willan A, Szalai JP (2001) The randomized placebo-phase design for clinical trials. J Clin Epidemiol 54:550–557

    PubMed  CAS  Google Scholar 

  • Frikha F, Rigolet A, Behin A, Fautrel B, Herson S, Benveniste O (2009) Efficacy of rituximab in refractory and relapsing myositis with anti-JO1 antibodies: a report of two cases. Rheumatology (Oxford) 48:1166–1168

    CAS  Google Scholar 

  • Fujimoto M, Sato S (2007) B cell signaling and autoimmune diseases: CD19/CD22 loop as a B cell signaling device to regulate the balance of autoimmunity. J Dermatol Sci 46:1–9

    PubMed  CAS  Google Scholar 

  • Gottenberg JE, Guillevin L, Lambotte O, Combe B, Allanore Y, Cantagrel A, Larroche C, Soubrier M, Bouillet L, Dougados M, Fain O, Farge D, Kyndt X, Lortholary O, Masson C, Moura B, Remy P, Thomas T, Wendling D, Anaya JM, Sibilia J, Mariette X (2005) Tolerance and short term efficacy of rituximab in 43 patients with systemic autoimmune diseases. Ann Rheum Dis 64:913–920

    PubMed  CAS  Google Scholar 

  • Greenberg SA, Bradshaw EM, Pinkus JL, Pinkus GS, Burleson T, Due B, Bregoli L, O’Connor KC, Amato AA (2005) Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 65:1782–1787

    PubMed  CAS  Google Scholar 

  • Grundtman C, Malmstrom V, Lundberg IE (2007) Immune mechanisms in the pathogenesis of idiopathic inflammatory myopathies. Arthritis Res Ther 9:208

    PubMed  Google Scholar 

  • Gu YS, Kong J, Cheema GS, Keen CL, Wick G, Gershwin ME (2008) The immunobiology of systemic sclerosis. Semin Arthritis Rheum 38:132–160

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Hamaguchi Y, Yanaba K, Bouaziz JD, Uchida J, Fujimoto M, Matsushita T, Matsushita Y, Horikawa M, Komura K, Takehara K, Sato S, Tedder TF (2006) B-lymphocyte depletion reduces skin fibrosis and autoimmunity in the tight-skin mouse model for systemic sclerosis. Am J Pathol 169:954–966

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Sato S, Fujimoto M, Ihn H, Kikuchi K, Takehara K (1998) Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. J Rheumatol 25:308–313

    PubMed  CAS  Google Scholar 

  • Hervier B, Devilliers H, Stanciu R, Meyer A, Uzunhan Y, Masseau A, Dubucquoi S, Hatron PY, Musset L, Wallaert B, Nunes H, Maisonobe T, Olsson NO, Adoue D, Arlet P, Sibilia J, Guiguet M, Lauque D, Amoura Z, Hachulla E, Hamidou M, Benveniste O (2012) Hierarchical cluster and survival analyses of antisynthetase syndrome: phenotype and outcome are correlated with anti-tRNA synthetase antibody specificity. Autoimmun Rev 12:210–217

    PubMed  CAS  Google Scholar 

  • Hirakata M (2005) Autoantibodies to aminoacyl-tRNA synthetases. Intern Med 44:527–528

    PubMed  Google Scholar 

  • Hitomi Y, Tsuchiya N, Hasegawa M, Fujimoto M, Takehara K, Tokunaga K, Sato S (2007) Association of CD22 gene polymorphism with susceptibility to limited cutaneous systemic sclerosis. Tissue Antigens 69:242–249

    PubMed  CAS  Google Scholar 

  • Holzer U, Van Royen-Kerkhof A, Van Der Torre P, Kuemmerle-Deschner J, Well C, Handgretinger R, Mueller I, Wulffraat N (2010) Successful autologous stem cell transplantation in two patients with juvenile dermatomyositis. Scand J Rheumatol 39:88–92

    PubMed  CAS  Google Scholar 

  • Ishida T, Matsumoto Y, Ohashi M, Sasaki R (1993) Analysis of lymphocyte subpopulations in peripheral blood in adult and juvenile cases of dermatomyositis. J Dermatol 20:30–34

    PubMed  CAS  Google Scholar 

  • Ishii W, Matsuda M, Shimojima Y, Itoh S, Sumida T, Ikeda S (2008) Flow cytometric analysis of lymphocyte subpopulations and TH1/TH2 balance in patients with polymyositis and dermatomyositis. Intern Med 47:1593–1599

    PubMed  Google Scholar 

  • Joffe MM, Love LA, Leff RL, et al (1993) Drug therapy of the idiopathic inflammatory myopathies: predictors of response to prednisone, azathioprine, and methotrexate and a comparison of their efficacy. Am J Med 94(4):379–387

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Tochimoto A, Ichikawa N, Harigai M, Hara M, Kotake S, Kitamura Y, Kamatani N (2003) Association of IL1A gene polymorphisms with susceptibility to and severity of systemic sclerosis in the Japanese population. Arthritis Rheum 48:186–192

    PubMed  CAS  Google Scholar 

  • Khanna S, Reed AM (2010) Immunopathogenesis of juvenile dermatomyositis. Muscle Nerve 41:581–592

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Koarada S, Tada Y, Ushiyama O, Morito F, Suzuki N, Ohta A, Horiuchi T, Miyake K, Nagasawa K (2001) Difference in B cell activation between dermatomyositis and polymyositis: analysis of the expression of RP105 on peripheral blood B cells. Ann Rheum Dis 60:1137–1140

    PubMed  CAS  Google Scholar 

  • Klein U, Rajewsky K, Kuppers R (1998) Human immunoglobulin (Ig)M + IgD + peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 188:1679–1689

    PubMed  CAS  Google Scholar 

  • Kondo K, Okada T, Matsui T, Kato S, Date K, Yoshihara M, Nagata Y, Takagi H, Yoneda M, Sugie I (2001) Establishment and characterization of a human B cell line from the lung tissue of a patient with scleroderma; extraordinary high level of IL-6 secretion by stimulated fibroblasts. Cytokine 13:220–226

    PubMed  CAS  Google Scholar 

  • Krystufkova O, Vallerskog T, Helmers SB, Mann H, Putova I, Belacek J, Malmstrom V, Trollmo C, Vencovsky J, Lundberg IE (2009) Increased serum levels of B cell activating factor (BAFF) in subsets of patients with idiopathic inflammatory myopathies. Ann Rheum Dis 68:836–843

    PubMed  CAS  Google Scholar 

  • La Corte R, Lo Mo Naco A, Locaputo A, Dolzani F, Trotta F (2006) In patients with antisynthetase syndrome the occurrence of anti-Ro/SSA antibodies causes a more severe interstitial lung disease. Autoimmunity 39:249–253

    PubMed  Google Scholar 

  • Lafyatis R, Kissin E, York M, Farina G, Viger K, Fritzler MJ, Merkel PA, Simms RW (2009) B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum 60:578–583

    PubMed  Google Scholar 

  • Lambotte O, Kotb R, Maigne G, Blanc FX, Goujard C, Delfraissy JF (2005) Efficacy of rituximab in refractory polymyositis. J Rheumatol 32:1369–1370

    PubMed  Google Scholar 

  • Lerario A, Cogiamanian F, Marchesi C, Belicchi M, Bresolin N, Porretti L, Torrente Y (2010) Effects of rituximab in two patients with dysferlin-deficient muscular dystrophy. BMC Musculoskelet Disord 11:157

    PubMed  Google Scholar 

  • Levine T (2002) A pilot study of rituximab therapy for refractory dermatomyosisits. Arthritis Rheum 46

    Google Scholar 

  • Levine TD (2005) Rituximab in the treatment of dermatomyositis: an open-label pilot study. Arthritis Rheum 52:601–607

    PubMed  CAS  Google Scholar 

  • Limaye V, Hissaria P, Liew CL, Koszyka B (2012) Efficacy of rituximab in refractory antisynthetase syndrome. Intern Med J 42:e4–e7

    PubMed  CAS  Google Scholar 

  • Lopez De Padilla CM, Vallejo AN, Lacomis D, Mcnallan K, Reed AM (2009) Extranodal lymphoid microstructures in inflamed muscle and disease severity of new-onset juvenile dermatomyositis. Arthritis Rheum 60:1160–1172

    PubMed  Google Scholar 

  • Love LA, Leff RL, Fraser DD, Targoff IN, Dalakas M, Plotz PH, Miller FW (1991) A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore) 70:360–374

    CAS  Google Scholar 

  • Mackay F, Browning JL (2002) BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2:465–475

    PubMed  CAS  Google Scholar 

  • Majmudar S, Hall HA, Zimmermann B (2009) Treatment of adult inflammatory myositis with rituximab: an emerging therapy for refractory patients. J Clin Rheumatol 15:338–340

    PubMed  Google Scholar 

  • Mammen AL (2010) Dermatomyositis and polymyositis: clinical presentation, autoantibodies, and pathogenesis. Ann N Y Acad Sci 1184:134–153

    PubMed  CAS  Google Scholar 

  • Matsushita T, Fujimoto M, Hasegawa M, Matsushita Y, Komura K, Ogawa F, Watanabe R, Takehara K, Sato S (2007a) BAFF antagonist attenuates the development of skin fibrosis in tight-skin mice. J Invest Dermatol 127:2772–2780

    PubMed  CAS  Google Scholar 

  • Matsushita T, Fujimoto M, Hasegawa M, Tanaka C, Kumada S, Ogawa F, Takehara K, Sato S (2007b) Elevated serum APRIL levels in patients with systemic sclerosis: distinct profiles of systemic sclerosis categorized by APRIL and BAFF. J Rheumatol 34:2056–2062

    PubMed  CAS  Google Scholar 

  • Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S (2006) Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum 54:192–201

    PubMed  CAS  Google Scholar 

  • Miller FW, Love LA, Barbieri SA, Balow JE, Plotz PH (1990) Lymphocyte activation markers in idiopathic myositis: changes with disease activity and differences among clinical and autoantibody subgroups. Clin Exp Immunol 81:373–379

    PubMed  CAS  Google Scholar 

  • Miller FW, Rider LG, Chung YL, Cooper R, Danko K, Farewell V, Lundberg I, Morrison C, Oakley L, Oakley I, Pilkington C, Vencovsky J, Vincent K, Scott DL, Isenberg DA (2001) Proposed preliminary core set measures for disease outcome assessment in adult and juvenile idiopathic inflammatory myopathies. Rheumatology (Oxford) 40:1262–1273

    CAS  Google Scholar 

  • Miller J, Walsh Y, Saminaden S (2002) Randomised double blind controlled trial of methotrexate and steroids compared with azathioprine and steroids in the treatment of idiopathic inflammatory myopathy. J Neurol Sci 199(Suppl 1):S53

    Google Scholar 

  • Mok CC, Ho LY, To CH (2007) Rituximab for refractory polymyositis: an open-label prospective study. J Rheumatol 34:1864–1868

    PubMed  CAS  Google Scholar 

  • Moore PA, Belvedere O, Orr A, Pieri K, Lafleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, Nardelli B, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285:260–263

    PubMed  CAS  Google Scholar 

  • Murai C, Saito S, Kasturi KN, Bona CA (1998) Spontaneous occurrence of anti-fibrillin-1 autoantibodies in tight-skin mice. Autoimmunity 28:151–155

    PubMed  CAS  Google Scholar 

  • Noss EH, Hausner-Sypek DL, Weinblatt ME (2006) Rituximab as therapy for refractory polymyositis and dermatomyositis. J Rheumatol 33:1021–1026

    PubMed  Google Scholar 

  • O’Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK, Ahonen C, Lin LL, Mantchev GT, Bram RJ, Noelle RJ (2004) BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 199:91–98

    PubMed  Google Scholar 

  • Odaka M, Hasegawa M, Hamaguchi Y, Ishiura N, Kumada S, Matsushita T, Fujimoto M (2010) Autoantibody-mediated regulation of B cell responses by functional anti-CD22 autoantibodies in patients with systemic sclerosis. Clin Exp Immunol 159(2):176–184

    PubMed  CAS  Google Scholar 

  • Oddis CV, Reed AM, Aggarwal R, Rider LG, Ascherman DP, Levesque MC, Barohn RJ, Feldman BM, Harris-Love MO, Koontz DC, Fertig N, Kelley SS, Pryber SL, Miller FW, Rockette HE, Rituximab in Myositis Study Group (2012) Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. Arthritis Rheum 65(2):314–324

    Google Scholar 

  • Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, Lipsky PE, Radbruch A, Dorner T (2000) Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 165:5970–5979

    PubMed  CAS  Google Scholar 

  • Pablos JL, Everett ET, Norris JS (2004) The tight skin mouse: an animal model of systemic sclerosis. Clin Exp Rheumatol 22:S81–S85

    PubMed  CAS  Google Scholar 

  • Rider LG, Giannini EH, Brunner HI, Ruperto N, James-Newton L, Reed AM, Lachenbruch PA, Miller FW (2004) International consensus on preliminary definitions of improvement in adult and juvenile myositis. Arthritis Rheum 50:2281–2290

    PubMed  Google Scholar 

  • Rider LG, Giannini EH, Harris-Love M, Joe G, Isenberg D, Pilkington C, Lachenbruch PA, Miller FW (2003) Defining clinical improvement in adult and juvenile myositis. J Rheumatol 30:603–617

    PubMed  Google Scholar 

  • Rider LG, Koziol D, Giannini EH, Jain MS, Smith MR, Whitney-Mahoney K, Feldman BM, Wright SJ, Lindsley CB, Pachman LM, Villalba ML, Lovell DJ, Bowyer SL, Plotz PH, Miller FW, Hicks JE (2010) Validation of manual muscle testing and a subset of eight muscles for adult and juvenile idiopathic inflammatory myopathies. Arthritis Care Res (Hoboken) 62:465–472

    Google Scholar 

  • Rios Fernandez R, Callejas Rubio JL, Sanchez Cano D, Saez Moreno JA, Ortego Centeno N (2009) Rituximab in the treatment of dermatomyositis and other inflammatory myopathies. A report of 4 cases and review of the literature. Clin Exp Rheumatol 27:1009–1016

    PubMed  CAS  Google Scholar 

  • Saito E, Fujimoto M, Hasegawa M, Komura K, Hamaguchi Y, Kaburagi Y, Nagaoka T, Takehara K, Tedder TF, Sato S (2002) CD19-dependent B lymphocyte signaling thresholds influence skin fibrosis and autoimmunity in the tight-skin mouse. J Clin Invest 109:1453–1462

    PubMed  CAS  Google Scholar 

  • Sanchez-Ramon S, Ravell JC, De La Torre I, Montoro M, Rodriguez-Mahou M, Carreno-Perez L, Fernandez-Cruz E, Lopez-Longo FJ (2010) Long-term remission of severe refractory dermatopolymyositis with a weekly-scheme of immunoglobulin followed by rituximab therapy. Rheumatol Int 30:817–819

    PubMed  Google Scholar 

  • Sato S, Fujimoto M, Hasegawa M, Takehara K (2004a) Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum 50:1918–1927

    PubMed  Google Scholar 

  • Sato S, Fujimoto M, Hasegawa M, Takehara K (2004b) Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum 50:1918–1927

    PubMed  Google Scholar 

  • Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K (2000) Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol 165:6635–6643

    PubMed  CAS  Google Scholar 

  • Scala E, Pallotta S, Frezzolini A, Abeni D, Barbieri C, Sampogna F, De Pita O, Puddu P, Paganelli R, Russo G (2004) Cytokine and chemokine levels in systemic sclerosis: relationship with cutaneous and internal organ involvement. Clin Exp Immunol 138:540–546

    PubMed  CAS  Google Scholar 

  • Schneider P, Mackay F, Steiner V, Hofmann K, Bodmer JL, Holler N, Ambrose C, Lawton P, Bixler S, Acha-Orbea H, Valmori D, Romero P, Werner-Favre C, Zubler RH, Browning JL, Tschopp J (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189:1747–1756

    PubMed  CAS  Google Scholar 

  • Sem M, Molberg O, Lund MB, Gran JT (2009) Rituximab treatment of the anti-synthetase syndrome: a retrospective case series. Rheumatology (Oxford) 48:968–971

    CAS  Google Scholar 

  • Smith V, Piette Y, van Praet JT, Decuman S, Deschepper E, Elewaut D, De Keyser F (2013) Two-year results of an open pilot study of a 2-treatment course with rituximab in patients with early systemic sclerosis with diffuse skin involvement. J Rheumatol 40:52–57

    PubMed  CAS  Google Scholar 

  • Smith V, Van Praet JT, Vandooren B, Van Der Cruyssen B, Naeyaert JM, Decuman S, Elewaut D, De Keyser F (2010) Rituximab in diffuse cutaneous systemic sclerosis: an open-label clinical and histopathological study. Ann Rheum Dis 69:193–197

    PubMed  CAS  Google Scholar 

  • Soejima M, Kang EH, Gu X, Katsumata Y, Clemens PR, Ascherman DP (2011) Role of innate immunity in a murine model of histidyl-transfer RNA synthetase (Jo-1)-mediated myositis. Arthritis Rheum 63:479–487

    PubMed  CAS  Google Scholar 

  • Stockinger B, Zal T, Zal A, Gray D (1996) B cells solicit their own help from T cells. J Exp Med 183:891–899

    PubMed  CAS  Google Scholar 

  • Stone KB, Oddis CV, Fertig N, Katsumata Y, Lucas M, Vogt M, Domsic R, Ascherman DP (2007) Anti-Jo-1 antibody levels correlate with disease activity in idiopathic inflammatory myopathy. Arthritis Rheum 56:3125–3131

    PubMed  CAS  Google Scholar 

  • Sultan SM, Allen E, Oddis CV, Kiely P, Cooper RG, Lundberg IE, Vencovsky J, Isenberg DA (2008a) Reliability and validity of the myositis disease activity assessment tool. Arthritis Rheum 58:3593–3599

    PubMed  Google Scholar 

  • Sultan SM, NG KP, Edwards JC, Isenberg DA, Cambridge G (2008b) Clinical outcome following B cell depletion therapy in eight patients with refractory idiopathic inflammatory myopathy. Clin Exp Rheumatol 26:887–893

    PubMed  CAS  Google Scholar 

  • Tan FK, Arnett FC, Antohi S, Saito S, Mirarchi A, Spiera H, Sasaki T, Shoichi O, Takeuchi K, Pandey JP, Silver RM, Leroy C, Postlethwaite AE, Bona CA (1999) Autoantibodies to the extracellular matrix microfibrillar protein, fibrillin-1, in patients with scleroderma and other connective tissue diseases. J immunol 163:1066–1072

    PubMed  CAS  Google Scholar 

  • Tan FK, Wang N, Kuwana M, Chakraborty R, Bona CA, Milewicz DM, Arnett FC (2001) Association of fibrillin 1 single-nucleotide polymorphism haplotypes with systemic sclerosis in Choctaw and Japanese populations. Arthritis Rheum 44:893–901

    PubMed  CAS  Google Scholar 

  • Targoff IN (2000) Update on myositis-specific and myositis-associated autoantibodies. Curr Opin Rheumatol 12:475–481

    PubMed  CAS  Google Scholar 

  • Tedder TF, Inaoki M, Sato S (1997) The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 6:107–118

    PubMed  CAS  Google Scholar 

  • Tzaribachev N, Koetter I, Kuemmerle-Deschner JB, Schedel J (2009) Rituximab for the treatment of refractory pediatric autoimmune diseases: a case series. Cases J 2:6609

    PubMed  Google Scholar 

  • Valiyil R, Casciola-Rosen L, Hong G, Mammen A, Christopher-Stine L (2010) Rituximab therapy for myopathy associated with anti-signal recognition particle antibodies: a case series. Arthritis Care Res (Hoboken) 62:1328–1334

    CAS  Google Scholar 

  • Van De Vlekkert J, Hoogendijk JE, De Haan RJ, Algra A, Van Der Tweel I, Van Der Pol WL, Uijtendaal EV, De Visser M, Dexa Myositis T (2010) Oral dexamethasone pulse therapy versus daily prednisolone in sub-acute onset myositis, a randomised clinical trial. Neuromuscul Disord 20:382–389

    PubMed  Google Scholar 

  • Vandenbroucke E, Grutters JC, Altenburg J, Boersma WG, Ter Borg EJ, Van Den Bosch JM (2009) Rituximab in life threatening antisynthetase syndrome. Rheumatol Int 29:1499–1502

    PubMed  CAS  Google Scholar 

  • Vordenbaumen S, Neuen-Jacob E, Richter J, Schneider M (2010) Inclusion body myositis in a patient with long standing rheumatoid arthritis treated with anti-TNFalpha and rituximab. Clin Rheumatol 29:555–558

    PubMed  Google Scholar 

  • Whelan BR, Isenberg DA (2009) Poor response of anti-SRP-positive idiopathic immune myositis to B-cell depletion. Rheumatology (Oxford) 48:594–595

    Google Scholar 

  • Yamamoto T (2006) The bleomycin-induced scleroderma model: what have we learned for scleroderma pathogenesis? Arch Dermatol Res 297:333–344

    PubMed  Google Scholar 

  • Yoshizaki A, Iwata Y, Komura K, Ogawa F, Hara T, Muroi E, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Tedder TF, Sato S (2008) CD19 regulates skin and lung fibrosis via Toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am J Pathol 172:1650–1663

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Aggarwal, R., Nagaraja, V., Khanna, D. (2014). B-Cell Targeted Therapies in Systemic Sclerosis and Inflammatory Myopathies. In: Bosch, X., Ramos-Casals, M., Khamashta, M. (eds) Drugs Targeting B-Cells in Autoimmune Diseases. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0706-7_9

Download citation

Publish with us

Policies and ethics