Skip to main content

Acquired Resistance to Tamoxifen: Back to the Beginning

  • Chapter
  • First Online:
Tamoxifen

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 1416 Accesses

Abstract

The clinical acceptance and validation of the therapeutic strategy of long-term adjuvant tamoxifen treatment mandated an examination of acquired drug resistance under laboratory conditions. The first model in vivo of acquired resistance of ER-positive breast cancer cells transplanted into immune deficient mice demonstrated tamoxifen-stimulated tumor growth after about 2 years of continuous treatment. When tamoxifen was stopped, tumors also grew with physiologic estradiol. The model showed that no estrogen (similar to the use of aromatase inhibitors) or a pure antiestrogen to destroy ER (fulvestrant) presaged this therapeutic approach in clinical trials a decade later. However, the long-term retransplantation of breast tumors with acquired tamoxifen resistance for at least 5 years demonstrated a vulnerability of these tumors. Tamoxifen-stimulated tumor growth but physiologic estrogen now caused tumor regression and apoptosis. The new biology of estrogen-induced apoptosis now is used to explain the decrease in mortality after adjuvant tamoxifen is stopped in patients and also the value of conjugated equine estrogens to reduce breast cancer incidence in women treated in their 60s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGuire WL, Carbone PP, Vollmer EP, United States. National Cancer Institute. Breast Cancer Treatment Committee (1975) Estrogen receptors in human breast cancer. Raven Press, New York

    Google Scholar 

  2. Jordan VC (2008) Tamoxifen: catalyst for the change to targeted therapy. Eur J Cancer 44:30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ingle JN, Ahmann DL, Green SJ et al (1981) Randomized clinical trial of diethylstilbestrol versus tamoxifen in postmenopausal women with advanced breast cancer. N Engl J Med 304:16–21

    Article  CAS  PubMed  Google Scholar 

  4. Soule HD, Vazguez J, Long A et al (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416

    Article  CAS  PubMed  Google Scholar 

  5. Brooks SC, Locke ER, Soule HD (1973) Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem 248:6251–6253

    CAS  PubMed  Google Scholar 

  6. Lippman ME, Bolan G (1975) Oestrogen-responsive human breast cancer in long term tissue culture. Nature 256:592–593

    Article  CAS  PubMed  Google Scholar 

  7. Shafie SM (1980) Estrogen and the growth of breast cancer: new evidence suggests indirect action. Science 209:701–702

    Article  CAS  PubMed  Google Scholar 

  8. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A 83:2496–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bindal RD, Katzenellenbogen JA (1988) Bis(4-hydroxyphenyl)[2-(phenoxysulfonyl)phenyl]methane: isolation and structure elucidation of a novel estrogen from commercial preparations of phenol red (phenolsulfonphthalein). J Med Chem 31:1978–1983

    Article  CAS  PubMed  Google Scholar 

  10. Welshons WV, Jordan VC (1987) Adaptation of estrogen-dependent MCF-7 cells to low estrogen (phenol red-free) culture. Eur J Cancer Clin Oncol 23:1935–1939

    Article  CAS  PubMed  Google Scholar 

  11. Levenson AS, Jordan VC (1997) MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res 57:3071–3078

    CAS  PubMed  Google Scholar 

  12. Nawata H, Bronzert D, Lippman ME (1981) Isolation and characterization of a tamoxifen-resistant cell line derived from MCF-7 human breast cancer cells. J Biol Chem 256:5016–5021

    CAS  PubMed  Google Scholar 

  13. Miller MA, Lippman ME, Katzenellenbogen BS (1984) Antiestrogen binding in antiestrogen growth-resistant estrogen-responsive clonal variants of MCF-7 human breast cancer cells. Cancer Res 44:5038–5045

    CAS  PubMed  Google Scholar 

  14. Bronzert DA, Greene GL, Lippman ME (1985) Selection and characterization of a breast cancer cell line resistant to the antiestrogen LY 117018. Endocrinology 117:1409–1417

    Article  CAS  PubMed  Google Scholar 

  15. van den Berg HW, Lynch M, Martin J et al (1989) Characterisation of a tamoxifen-resistant variant of the ZR-75-1 human breast cancer cell line (ZR-75-9a1) and ability of the resistant phenotype. Br J Cancer 59:522–526

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wiseman LR, Johnson MD, Wakeling AE et al (1993) Type I IGF receptor and acquired tamoxifen resistance in oestrogen-responsive human breast cancer cells. Eur J Cancer 29A:2256–2264

    Article  CAS  PubMed  Google Scholar 

  17. Brunner N, Frandsen TL, Holst-Hansen C et al (1993) MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780. Cancer Res 53:3229–3232

    CAS  PubMed  Google Scholar 

  18. Lykkesfeldt AE, Madsen MW, Briand P (1994) Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164,384 and ICI 182,780 sensitive human breast cancer cell line, MCF-7/TAMR-1. Cancer Res 54:1587–1595

    CAS  PubMed  Google Scholar 

  19. Borras M, Jin L, Bouhoute A et al (1994) Evaluation of estrogen receptor, antiestrogen binding sites and calmodulin for antiestrogen resistance of two clones derived from the MCF-7 breast cancer cell line. Biochem Pharmacol 48:2015–2024

    Article  CAS  PubMed  Google Scholar 

  20. Brunner N, Boysen B, Jirus S et al (1997) MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Res 57:3486–3493

    CAS  PubMed  Google Scholar 

  21. Larsen SS, Madsen MW, Jensen BL, Lykkesfeldt AE (1997) Resistance of human breast-cancer cells to the pure steroidal anti-estrogen ICI 182,780 is not associated with a general loss of estrogen-receptor expression or lack of estrogen responsiveness. Int J Cancer 72:1129–1136

    Article  CAS  PubMed  Google Scholar 

  22. Parisot JP, Leeding KS, Hu XF et al (1999) Induction of insulin-like growth factor binding protein expression by ICI 182,780 in a tamoxifen-resistant human breast cancer cell line. Breast Cancer Res Treat 55:231–242

    Article  CAS  PubMed  Google Scholar 

  23. Chan CM, Lykkesfeldt AE, Parker MG, Dowsett M (1999) Expression of nuclear receptor interacting proteins TIF-1, SUG-1, receptor interacting protein 140, and corepressor SMRT in tamoxifen-resistant breast cancer. Clin Cancer Res 5:3460–3467

    CAS  PubMed  Google Scholar 

  24. Shafie SM, Grantham FH (1981) Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst 67:51–56

    CAS  PubMed  Google Scholar 

  25. Osborne CK, Hobbs K, Clark GM (1985) Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Res 45:584–590

    CAS  PubMed  Google Scholar 

  26. Osborne CK, Coronado EB, Robinson JP (1987) Human breast cancer in the athymic nude mouse: cytostatic effects of long-term antiestrogen therapy. Eur J Cancer Clin Oncol 23:1189–1196

    Article  CAS  PubMed  Google Scholar 

  27. Jordan VC, Allen KE (1980) Evaluation of the antitumour activity of the non-steroidal antioestrogen monohydroxytamoxifen in the DMBA-induced rat mammary carcinoma model. Eur J Cancer 16:239–251

    Article  CAS  PubMed  Google Scholar 

  28. Gottardis MM, Jordan VC (1988) Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res 48:5183–5187

    CAS  PubMed  Google Scholar 

  29. Gottardis MM, Wagner RJ, Borden EC, Jordan VC (1989) Differential ability of antiestrogens to stimulate breast cancer cell (MCF-7) growth in vivo and in vitro. Cancer Res 49:4765–4769

    CAS  PubMed  Google Scholar 

  30. Harper MJ, Walpole AL (1966) Contrasting endocrine activities of cis and trans isomers in a series of substituted triphenylethylenes. Nature 212:87

    Article  CAS  PubMed  Google Scholar 

  31. Osborne CK, Coronado E, Allred DC et al (1991) Acquired tamoxifen resistance: correlation with reduced breast tumor levels of tamoxifen and isomerization of trans-4-hydroxytamoxifen. J Natl Cancer Inst 83:1477–1482

    Article  CAS  PubMed  Google Scholar 

  32. Osborne CK, Wiebe VJ, McGuire WL et al (1992) Tamoxifen and the isomers of 4-hydroxytamoxifen in tamoxifen-resistant tumors from breast cancer patients. J Clin Oncol 10:304–310

    Article  CAS  PubMed  Google Scholar 

  33. Wiebe VJ, Osborne CK, McGuire WL, DeGregorio MW (1992) Identification of estrogenic tamoxifen metabolite(s) in tamoxifen-resistant human breast tumors. J Clin Oncol 10:990–994

    Article  CAS  PubMed  Google Scholar 

  34. Murphy CS, Langan-Fahey SM, McCague R, Jordan VC (1990) Structure-function relationships of hydroxylated metabolites of tamoxifen that control the proliferation of estrogen-responsive T47D breast cancer cells in vitro. Mol Pharmacol 38:737–743

    CAS  PubMed  Google Scholar 

  35. Jordan VC, Koch R, Langan S, McCague R (1988) Ligand interaction at the estrogen receptor to program antiestrogen action: a study with nonsteroidal compounds in vitro. Endocrinology 122:1449–1454

    Article  CAS  PubMed  Google Scholar 

  36. Wolf DM, Langan-Fahey SM, Parker CJ et al (1993) Investigation of the mechanism of tamoxifen-stimulated breast tumor growth with nonisomerizable analogues of tamoxifen and metabolites. J Natl Cancer Inst 85:806–812

    Article  CAS  PubMed  Google Scholar 

  37. Benz CC, Scott GK, Sarup JC et al (1992) Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24:85–95

    Article  CAS  PubMed  Google Scholar 

  38. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  39. Marty M, Cognetti F, Maraninchi D et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23:4265–4274

    Article  CAS  PubMed  Google Scholar 

  40. Gasparini G, Gion M, Mariani L et al (2007) Randomized Phase II Trial of weekly paclitaxel alone versus trastuzumab plus weekly paclitaxel as first-line therapy of patients with Her-2 positive advanced breast cancer. Breast Cancer Res Treat 101:355–365

    Article  CAS  PubMed  Google Scholar 

  41. Robert N, Leyland-Jones B, Asmar L et al (2006) Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 24:2786–2792

    Article  CAS  PubMed  Google Scholar 

  42. Bernard-Marty C, Lebrun F, Awada A, Piccart MJ (2006) Monoclonal antibody-based targeted therapy in breast cancer: current status and future directions. Drugs 66:1577–1591

    Article  CAS  PubMed  Google Scholar 

  43. Cortes J, Fumoleau P, Bianchi GV et al (2012) Pertuzumab monotherapy after trastuzumab-based treatment and subsequent reintroduction of trastuzumab: activity and tolerability in patients with advanced human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 30:1594–1600

    Article  CAS  PubMed  Google Scholar 

  44. Kiewe P, Hasmuller S, Kahlert S et al (2006) Phase I trial of the trifunctional anti-HER2 x anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin Cancer Res 12:3085–3091

    Article  CAS  PubMed  Google Scholar 

  45. Konecny GE, Pegram MD, Venkatesan N et al (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66:1630–1639

    Article  CAS  PubMed  Google Scholar 

  46. Gomez HL, Doval DC, Chavez MA et al (2008) Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J Clin Oncol 26:2999–3005

    Article  CAS  PubMed  Google Scholar 

  47. Nelson MH, Dolder CR (2006) Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother 40:261–269

    Article  CAS  PubMed  Google Scholar 

  48. Cameron D, Casey M, Press M et al (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112:533–543

    Article  CAS  PubMed  Google Scholar 

  49. Xia W, Bacus S, Hegde P et al (2006) A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci U S A 103:7795–7800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shou J, Massarweh S, Osborne CK et al (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96:926–935

    Article  CAS  PubMed  Google Scholar 

  51. Riemsma R, Forbes CA, Amonkar MM et al (2012) Systematic review of lapatinib in combination with letrozole compared with other first-line treatments for hormone receptor positive(HR+) and HER2+ advanced or metastatic breast cancer (MBC). Curr Med Res Opin 28(8):1263–1279

    Article  CAS  PubMed  Google Scholar 

  52. Maximov PY, Lewis-Wambi JS, Jordan VC (2009) The paradox of oestradiol-induced breast cancer cell growth and apoptosis. Curr Signal Transduct Ther 4:88–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schafer JM, Lee ES, O’Regan RM et al (2000) Rapid development of tamoxifen-stimulated mutant p53 breast tumors (T47D) in athymic mice. Clin Cancer Res 6:4373–4380

    CAS  PubMed  Google Scholar 

  54. Osborne CK, Pippen J, Jones SE et al (2002) Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. J Clin Oncol 20:3386–3395

    Article  CAS  PubMed  Google Scholar 

  55. Howell A, Robertson JF, Quaresma Albano J et al (2002) Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J Clin Oncol 20:3396–3403

    Article  CAS  PubMed  Google Scholar 

  56. Wakeling AE, Bowler J (1987) Steroidal pure antioestrogens. J Endocrinol 112:R7–R10

    Article  CAS  PubMed  Google Scholar 

  57. Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867–3873

    CAS  PubMed  Google Scholar 

  58. Gottardis MM, Jiang SY, Jeng MH, Jordan VC (1989) Inhibition of tamoxifen-stimulated growth of an MCF-7 tumor variant in athymic mice by novel steroidal antiestrogens. Cancer Res 49:4090–4093

    CAS  PubMed  Google Scholar 

  59. Tormey DC, Jordan VC (1984) Long-term tamoxifen adjuvant therapy in node-positive breast cancer: a metabolic and pilot clinical study. Breast Cancer Res Treat 4:297–302

    Article  CAS  PubMed  Google Scholar 

  60. Scottish Cancer Trials Office (MRC), Edinburgh (1987) Adjuvant tamoxifen in the management of operable breast cancer: the Scottish Trial. Report from the Breast Cancer Trials Committee. Lancet 2:171–175

    Google Scholar 

  61. Fisher B, Brown A, Wolmark N et al (1987) Prolonging tamoxifen therapy for primary breast cancer. Findings from the National Surgical Adjuvant Breast and Bowel Project clinical trial. Ann Intern Med 106:649–654

    Article  CAS  PubMed  Google Scholar 

  62. Wolf DM, Jordan VC (1994) Characterization of tamoxifen stimulated MCF-7 tumor variants grown in athymic mice. Breast Cancer Res Treat 31:117–127

    Article  CAS  PubMed  Google Scholar 

  63. Wolf DM, Jordan VC (1993) A laboratory model to explain the survival advantage observed in patients taking adjuvant tamoxifen therapy. Recent Results Cancer Res 127:23–33

    Article  CAS  PubMed  Google Scholar 

  64. Yao K, Lee ES, Bentrem DJ et al (2000) Antitumor action of physiological estradiol on tamoxifen-stimulated breast tumors grown in athymic mice. Clin Cancer Res 6:2028–2036

    CAS  PubMed  Google Scholar 

  65. Santen RJ, Samojlik E, Wells SA (1980) Resistance of the ovary to blockade of aromatization with aminoglutethimide. J Clin Endocrinol Metab 51:473–477

    Article  CAS  PubMed  Google Scholar 

  66. Santen RJ, Worgul TJ, Samojlik E et al (1981) A randomized trial comparing surgical adrenalectomy with aminoglutethimide plus hydrocortisone in women with advanced breast cancer. N Engl J Med 305:545–551

    Article  CAS  PubMed  Google Scholar 

  67. Brodie AM, Schwarzel WC, Brodie HJ (1976) Studies on the mechanism of estrogen biosynthesis in the rat ovary–I. J Steroid Biochem 7:787–793

    Article  CAS  PubMed  Google Scholar 

  68. Brodie AM, Schwarzel WC, Shaikh AA, Brodie HJ (1977) The effect of an aromatase inhibitor, 4-hydroxy-4-androstene-3,17-dione, on estrogen-dependent processes in reproduction and breast cancer. Endocrinology 100:1684–1695

    Article  CAS  PubMed  Google Scholar 

  69. Brodie AM, Garrett WM, Hendrickson JR et al (1981) Inactivation of aromatase in vitro by 4-hydroxy-4-androstene-3,17-dione and 4-acetoxy-4-androstene-3,17-dione and sustained effects in vivo. Steroids 38:693–702

    Article  CAS  PubMed  Google Scholar 

  70. Coombes RC, Goss P, Dowsett M et al (1984) 4-hydroxyandrostenedione in treatment of postmenopausal patients with advanced breast cancer. Lancet 2:1237–1239

    Article  CAS  PubMed  Google Scholar 

  71. Masamura S, Santner SJ, Heitjan DF, Santen RJ (1995) Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells. J Clin Endocrinol Metab 80:2918–2925

    CAS  PubMed  Google Scholar 

  72. Shim WS, Conaway M, Masamura S et al (2000) Estradiol hypersensitivity and mitogen-activated protein kinase expression in long-term estrogen deprived human breast cancer cells in vivo. Endocrinology 141:396–405

    Article  CAS  PubMed  Google Scholar 

  73. Song RX, Mor G, Naftolin F et al (2001) Effect of long-term estrogen deprivation on apoptotic responses of breast cancer cells to 17beta-estradiol. J Natl Cancer Inst 93:1714–1723

    Article  CAS  PubMed  Google Scholar 

  74. Haddow A, Watkinson JM, Paterson E, Koller PC (1944) Influence of synthetic oestrogens on advanced malignant disease. Br Med J 2:393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kennedy BJ, Nathanson IT (1953) Effects of intensive sex steroid hormone therapy in advanced breast cancer. J Am Med Assoc 152:1135–1141

    Article  CAS  PubMed  Google Scholar 

  76. Anderson GL, Chlebowski RT, Aragaki AK et al (2012) Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: extended follow-up of the Women’s Health Initiative randomised placebo-controlled trial. Lancet Oncol 13:476–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jordan VC (2003) Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov 2:205–213

    Article  CAS  PubMed  Google Scholar 

  78. Haddow A (1971) Cancer research: the great debate. N Engl J Med 285:24–28

    Article  CAS  PubMed  Google Scholar 

  79. Haddow A, David A (1970) Karnofsky memorial lecture. Thoughts on chemical therapy. Cancer 26:737–754

    Article  CAS  PubMed  Google Scholar 

  80. Osipo C, Gajdos C, Liu H et al (2003) Paradoxical action of fulvestrant in estradiol-induced regression of tamoxifen-stimulated breast cancer. J Natl Cancer Inst 95:1597–1608

    Article  CAS  PubMed  Google Scholar 

  81. Jiang SY, Wolf DM, Yingling JM et al (1992) An estrogen receptor positive MCF-7 clone that is resistant to antiestrogens and estradiol. Mol Cell Endocrinol 90:77–86

    Article  CAS  PubMed  Google Scholar 

  82. Pink JJ, Jiang SY, Fritsch M, Jordan VC (1995) An estrogen-independent MCF-7 breast cancer cell line which contains a novel 80-kilodalton estrogen receptor-related protein. Cancer Res 55:2583–2590

    CAS  PubMed  Google Scholar 

  83. Lewis JS, Meeke K, Osipo C et al (2005) Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation. J Natl Cancer Inst 97:1746–1759

    Article  CAS  PubMed  Google Scholar 

  84. Lewis-Wambi JS, Kim HR, Wambi C et al (2008) Buthionine sulfoximine sensitizes antihormone-resistant human breast cancer cells to estrogen-induced apoptosis. Breast Cancer Res 10:R104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ariazi EA, Cunliffe HE, Lewis-Wambi JS et al (2011) Estrogen induces apoptosis in estrogen deprivation-resistant breast cancer through stress responses as identified by global gene expression across time. Proc Natl Acad Sci U S A 108:18879–18886

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fan P, McDaniel RE, Kim HR et al (2012) Modulating therapeutic effects of the c-Src inhibitor via oestrogen receptor and human epidermal growth factor receptor 2 in breast cancer cell lines. Eur J Cancer 48(18):3488–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brzozowski AM, Pike AC, Dauter Z et al (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758

    Article  CAS  PubMed  Google Scholar 

  88. Shiau AK, Barstad D, Loria PM et al (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    Article  CAS  PubMed  Google Scholar 

  89. Jordan VC, Koch R, Mittal S, Schneider MR (1986) Oestrogenic and antioestrogenic actions in a series of triphenylbut-1-enes: modulation of prolactin synthesis in vitro. Br J Pharmacol 87:217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lieberman ME, Gorski J, Jordan VC (1983) An estrogen receptor model to describe the regulation of prolactin synthesis by antiestrogens in vitro. J Biol Chem 258:4741–4745

    CAS  PubMed  Google Scholar 

  91. Lieberman ME, Jordan VC, Fritsch M et al (1983) Direct and reversible inhibition of estradiol-stimulated prolactin synthesis by antiestrogens in vitro. J Biol Chem 258:4734–4740

    CAS  PubMed  Google Scholar 

  92. Jordan VC, Lieberman ME (1984) Estrogen-stimulated prolactin synthesis in vitro. Classification of agonist, partial agonist, and antagonist actions based on structure. Mol Pharmacol 26:279–285

    CAS  PubMed  Google Scholar 

  93. Levenson AS, Catherino WH, Jordan VC (1997) Estrogenic activity is increased for an antiestrogen by a natural mutation of the estrogen receptor. J Steroid Biochem Mol Biol 60:261–268

    Article  CAS  PubMed  Google Scholar 

  94. Levenson AS, Tonetti DA, Jordan VC (1998) The oestrogen-like effect of 4-hydroxytamoxifen on induction of transforming growth factor alpha mRNA in MDA-MB-231 breast cancer cells stably expressing the oestrogen receptor. Br J Cancer 77:1812–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bentrem D, Dardes R, Liu H et al (2001) Molecular mechanism of action at estrogen receptor alpha of a new clinically relevant antiestrogen (GW7604) related to tamoxifen. Endocrinology 142:838–846

    Article  CAS  PubMed  Google Scholar 

  96. MacGregor Schafer J, Liu H, Bentrem DJ et al (2000) Allosteric silencing of activating function 1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by substituting glycine for aspartate at amino acid 351. Cancer Res 60:5097–5105

    CAS  PubMed  Google Scholar 

  97. Liu H, Park WC, Bentrem DJ et al (2002) Structure-function relationships of the raloxifene-estrogen receptor-alpha complex for regulating transforming growth factor-alpha expression in breast cancer cells. J Biol Chem 277:9189–9198

    Article  CAS  PubMed  Google Scholar 

  98. Liu H, Lee ES, Deb Los Reyes A et al (2001) Silencing and reactivation of the selective estrogen receptor modulator-estrogen receptor alpha complex. Cancer Res 61:3632–3639

    CAS  PubMed  Google Scholar 

  99. Jordan VC, Schafer JM, Levenson AS et al (2001) Molecular classification of estrogens. Cancer Res 61:6619–6623

    CAS  PubMed  Google Scholar 

  100. Bentrem D, Fox JE, Pearce ST et al (2003) Distinct molecular conformations of the estrogen receptor alpha complex exploited by environmental estrogens. Cancer Res 63:7490–7496

    CAS  PubMed  Google Scholar 

  101. Maximov P, Sengupta S, Lewis-Wambi JS et al (2011) The conformation of the estrogen receptor directs estrogen-induced apoptosis in breast cancer: A hypothesis. Horm Mol Biol Clin Investig 5:27–34

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hu ZZ, Kagan BL, Ariazi EA et al (2011) Proteomic analysis of pathways involved in estrogen-induced growth and apoptosis of breast cancer cells. PLoS One 6:e20410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wolf DM, Jordan VC (1994) The estrogen receptor from a tamoxifen stimulated MCF-7 tumor variant contains a point mutation in the ligand binding domain. Breast Cancer Res Treat 31:129–138

    Article  CAS  PubMed  Google Scholar 

  104. Catherino WH, Wolf DM, Jordan VC (1995) A naturally occurring estrogen receptor mutation results in increased estrogenicity of a tamoxifen analog. Mol Endocrinol 9:1053–1063

    CAS  PubMed  Google Scholar 

  105. Jeng MH, Jiang SY, Jordan VC (1994) Paradoxical regulation of estrogen-dependent growth factor gene expression in estrogen receptor (ER)-negative human breast cancer cells stably expressing ER. Cancer Lett 82:123–128

    Article  CAS  PubMed  Google Scholar 

  106. Levenson AS, Jordan VC (1998) The key to the antiestrogenic mechanism of raloxifene is amino acid 351 (aspartate) in the estrogen receptor. Cancer Res 58:1872–1875

    CAS  PubMed  Google Scholar 

  107. Jordan VC (1984) Biochemical pharmacology of antiestrogen action. Pharmacol Rev 36:245–276

    CAS  PubMed  Google Scholar 

  108. Levenson AS, MacGregor Schafer JI, Bentrem DJ et al (2001) Control of the estrogen-like actions of the tamoxifen-estrogen receptor complex by the surface amino acid at position 351. J Steroid Biochem Mol Biol 76:61–70

    Article  CAS  PubMed  Google Scholar 

  109. Dickson RB, Lippman ME (1995) Growth factors in breast cancer. Endocr Rev 16:559–589

    Article  CAS  PubMed  Google Scholar 

  110. Ellis MJ, Gao F, Dehdashti F et al (2009) Lower-dose vs high-dose oral estradiol therapy of hormone receptor-positive, aromatase inhibitor-resistant advanced breast cancer: a phase 2 randomized study. JAMA 302:774–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu H, Lee ES, Gajdos C et al (2003) Apoptotic action of 17beta-estradiol in raloxifene-resistant MCF-7 cells in vitro and in vivo. J Natl Cancer Inst 95:1586–1597

    Article  CAS  PubMed  Google Scholar 

  112. Lewis JS, Osipo C, Meeke K, Jordan VC (2005) Estrogen-induced apoptosis in a breast cancer model resistant to long-term estrogen withdrawal. J Steroid Biochem Mol Biol 94:131–141

    Article  CAS  PubMed  Google Scholar 

  113. Tonetti DA, Chisamore MJ, Grdina W et al (2000) Stable transfection of protein kinase C alpha cDNA in hormone-dependent breast cancer cell lines. Br J Cancer 83:782–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chisamore MJ, Ahmed Y, Bentrem DJ et al (2001) Novel antitumor effect of estradiol in athymic mice injected with a T47D breast cancer cell line overexpressing protein kinase Calpha. Clin Cancer Res 7:3156–3165

    CAS  PubMed  Google Scholar 

  115. Lin X, Yu Y, Zhao Y et al (2006) Overexpression of PKCα is required to impact estradiol inhibition and tamoxifen-resistance in a T47D human breast cancer tumor model. Carcinogenesis 27:1538–1546

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Y, Zhao H, Asztalos S et al (2009) Estradiol-induced regression in T47D:A18/PKCalpha tumors requires the estrogen receptor and interaction with the extracellular matrix. Mol Cancer Res 7:498–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Maximov, P.Y., McDaniel, R.E., Jordan, V.C. (2013). Acquired Resistance to Tamoxifen: Back to the Beginning. In: Tamoxifen. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0664-0_9

Download citation

Publish with us

Policies and ethics