Skip to main content
Book cover

Tamoxifen pp 47–67Cite as

Metabolites of Tamoxifen as the Basis of Drug Development

  • Chapter
  • First Online:
  • 1463 Accesses

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

By the early 1970s, a number of metabolites of tamoxifen had been identified in animals and following administration to a few patients. The hydroxylated metabolite of tamoxifen, 4-hydroxytamoxifen, proved to be the most interesting. The discovery of its high binding affinity for the estrogen receptor made it a new laboratory tool for all future in vitro studies of antiestrogen action and also provided the clue for all future structure-function relationships studies of new antiestrogens. These compounds would subsequently be developed as selective estrogen receptor modulators (SERMs). Tamoxifen is a prodrug but it is the metabolite 4-hydroxy-N-desmethyltamoxifen or endoxifen that has attracted pharmacogenetic interest. Mutations of the CYP2D6 gene control endoxifen production and have been associated with drug efficacy in some clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jordan VC, Collins MM, Rowsby L, Prestwich G (1977) A monohydroxylated metabolite of tamoxifen with potent antioestrogenic activity. J Endocrinol 75:305–316

    Article  CAS  PubMed  Google Scholar 

  2. Allen KE, Clark ER, Jordan VC (1980) Evidence for the metabolic activation of non-steroidal antioestrogens: a study of structure-activity relationships. Br J Pharmacol 71:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borgna JL, Rochefort H (1981) Hydroxylated metabolites of tamoxifen are formed in vivo and bound to estrogen receptor in target tissues. J Biol Chem 256:859–868

    CAS  PubMed  Google Scholar 

  4. Jordan VC, Dix CJ, Naylor KE et al (1978) Nonsteroidal antiestrogens: their biological effects and potential mechanisms of action. J Toxicol Environ Health 4:363–390

    Article  CAS  PubMed  Google Scholar 

  5. Lien EA, Solheim E, Kvinnsland S, Ueland PM (1988) Identification of 4-hydroxy-N-desmethyltamoxifen as a metabolite of tamoxifen in human bile. Cancer Res 48:2304–2308

    CAS  PubMed  Google Scholar 

  6. Lien EA, Solheim E, Lea OA et al (1989) Distribution of 4-hydroxy-N-desmethyltamoxifen and other tamoxifen metabolites in human biological fluids during tamoxifen treatment. Cancer Res 49:2175–2183

    CAS  PubMed  Google Scholar 

  7. Johnson MD, Zuo H, Lee KH et al (2004) Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 85:151–159

    Article  CAS  PubMed  Google Scholar 

  8. Desta Z, Ward BA, Soukhova NV, Flockhart DA (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 310:1062–1075

    Article  CAS  PubMed  Google Scholar 

  9. Crewe HK, Lennard MS, Tucker GT et al (1992) The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 34:262–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jordan VC, Brodie AM (2007) Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids 72:7–25

    Article  CAS  PubMed  Google Scholar 

  11. Jordan VC (2003) Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov 2:205–213

    Article  CAS  PubMed  Google Scholar 

  12. Fromson JM, Pearson S, Bramah S (1973) The metabolism of tamoxifen (I.C.I. 46,474). I. In laboratory animals. Xenobiotica 3:693–709

    Article  CAS  PubMed  Google Scholar 

  13. Fromson JM, Pearson S, Bramah S (1973) The metabolism of tamoxifen (I.C.I. 46,474). II. In female patients. Xenobiotica 3:711–714

    Article  CAS  PubMed  Google Scholar 

  14. Lieberman ME, Jordan VC, Fritsch M et al (1983) Direct and reversible inhibition of estradiol-stimulated prolactin synthesis by antiestrogens in vitro. J Biol Chem 258:4734–4740

    CAS  PubMed  Google Scholar 

  15. Adam HK, Gay MA, Moore RH (1980) Measurement of tamoxifen in serum by thin-layer densitometry. J Endocrinol 84:35–42

    Article  CAS  PubMed  Google Scholar 

  16. Adam HK, Douglas EJ, Kemp JV (1979) The metabolism of tamoxifen in humans. Biochem Pharmacol 27:145–147

    Article  Google Scholar 

  17. Kemp JV, Adam HK, Wakeling AE, Slater R (1983) Identification and biological activity of tamoxifen metabolites in human serum. Biochem Pharmacol 32:2045–2052

    Article  CAS  PubMed  Google Scholar 

  18. Bain RR, Jordan VC (1983) Identification of a new metabolite of tamoxifen in patient serum during breast cancer therapy. Biochem Pharmacol 32:373–375

    Article  CAS  PubMed  Google Scholar 

  19. Jordan VC, Bain RR, Brown RR et al (1983) Determination and pharmacology of a new hydroxylated metabolite of tamoxifen observed in patient sera during therapy for advanced breast cancer. Cancer Res 43:1446–1450

    CAS  PubMed  Google Scholar 

  20. Robinson SP, Langan-Fahey SM, Jordan VC (1989) Implications of tamoxifen metabolism in the athymic mouse for the study of antitumor effects upon human breast cancer xenografts. Eur J Cancer Clin Oncol 25:1769–1776

    Article  CAS  PubMed  Google Scholar 

  21. Jordan VC, Gosden B (1982) Importance of the alkylaminoethoxy side-chain for the estrogenic and antiestrogenic actions of tamoxifen and trioxifene in the immature rat uterus. Mol Cell Endocrinol 27:291–306

    Article  CAS  PubMed  Google Scholar 

  22. Lieberman ME, Gorski J, Jordan VC (1983) An estrogen receptor model to describe the regulation of prolactin synthesis by antiestrogens in vitro. J Biol Chem 258:4741–4745

    CAS  PubMed  Google Scholar 

  23. Katzenellenbogen JA, Carlson KE, Katzenellenbogen BS (1985) Facile geometric isomerization of phenolic non-steroidal estrogens and antiestrogens: limitations to the interpretation of experiments characterizing the activity of individual isomers. J Steroid Biochem 22:589–596

    Article  CAS  PubMed  Google Scholar 

  24. Katzenellenbogen BS, Norman MJ, Eckert RL et al (1984) Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxy-tamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res 44:112–119

    CAS  PubMed  Google Scholar 

  25. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A 83:2496–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murphy CS, Meisner LF, Wu SQ, Jordan VC (1989) Short- and long-term estrogen deprivation of T47D human breast cancer cells in culture. Eur J Cancer Clin Oncol 25:1777–1788

    Article  CAS  PubMed  Google Scholar 

  27. Jordan VC, Lieberman ME, Cormier E et al (1984) Structural requirements for the pharmacological activity of nonsteroidal antiestrogens in vitro. Mol Pharmacol 26:272–278

    CAS  PubMed  Google Scholar 

  28. Jordan VC, Koch R, Mittal S, Schneider MR (1986) Oestrogenic and antioestrogenic actions in a series of triphenylbut-1-enes: modulation of prolactin synthesis in vitro. Br J Pharmacol 87:217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murphy CS, Langan-Fahey SM, McCague R, Jordan VC (1990) Structure-function relationships of hydroxylated metabolites of tamoxifen that control the proliferation of estrogen-responsive T47D breast cancer cells in vitro. Mol Pharmacol 38:737–743

    CAS  PubMed  Google Scholar 

  30. Murphy CS, Parker CJ, McCague R, Jordan VC (1991) Structure-activity relationships of nonisomerizable derivatives of tamoxifen: importance of hydroxyl group and side chain positioning for biological activity. Mol Pharmacol 39:421–428

    CAS  PubMed  Google Scholar 

  31. Shiau AK, Barstad D, Loria PM et al (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    Article  CAS  PubMed  Google Scholar 

  32. Brzozowski AM, Pike AC, Dauter Z et al (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758

    Article  CAS  PubMed  Google Scholar 

  33. Wolf DM, Jordan VC (1994) The estrogen receptor from a tamoxifen stimulated MCF-7 tumor variant contains a point mutation in the ligand binding domain. Breast Cancer Res Treat 31:129–138

    Article  CAS  PubMed  Google Scholar 

  34. Wolf DM, Jordan VC (1994) Characterization of tamoxifen stimulated MCF-7 tumor variants grown in athymic mice. Breast Cancer Res Treat 31:117–127

    Article  CAS  PubMed  Google Scholar 

  35. MacGregor Schafer J, Liu H, Bentrem DJ et al (2000) Allosteric silencing of activating function 1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by substituting glycine for aspartate at amino acid 351. Cancer Res 60:5097–5105

    CAS  PubMed  Google Scholar 

  36. Levenson AS, Jordan VC (1998) The key to the antiestrogenic mechanism of raloxifene is amino acid 351 (aspartate) in the estrogen receptor. Cancer Res 58:1872–1875

    CAS  PubMed  Google Scholar 

  37. Liu H, Lee ES, Deb Los Reyes A et al (2001) Silencing and reactivation of the selective estrogen receptor modulator-estrogen receptor alpha complex. Cancer Res 61:3632–3639

    CAS  PubMed  Google Scholar 

  38. Levenson AS, Catherino WH, Jordan VC (1997) Estrogenic activity is increased for an antiestrogen by a natural mutation of the estrogen receptor. J Steroid Biochem Mol Biol 60:261–268

    Article  CAS  PubMed  Google Scholar 

  39. Liu H, Park WC, Bentrem DJ et al (2002) Structure-function relationships of the raloxifene-estrogen receptor-alpha complex for regulating transforming growth factor-alpha expression in breast cancer cells. J Biol Chem 277:9189–9198

    Article  CAS  PubMed  Google Scholar 

  40. Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357

    Article  CAS  PubMed  Google Scholar 

  41. Jordan VC, O’Malley BW (2007) Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol 25:5815–5824

    Article  CAS  PubMed  Google Scholar 

  42. Jordan VC, Gapstur S, Morrow M (2001) Selective estrogen receptor modulation and reduction in risk of breast cancer, osteoporosis, and coronary heart disease. J Natl Cancer Inst 93:1449–1457

    Article  CAS  PubMed  Google Scholar 

  43. Greaves P, Goonetilleke R, Nunn G et al (1993) Two-year carcinogenicity study of tamoxifen in Alderley Park Wistar-derived rats. Cancer Res 53:3919–3924

    CAS  PubMed  Google Scholar 

  44. Hard GC, Iatropoulos MJ, Jordan K et al (1993) Major difference in the hepatocarcinogenicity and DNA adduct forming ability between toremifene and tamoxifen in female Crl:CD(BR) rats. Cancer Res 53:4534–4541

    CAS  PubMed  Google Scholar 

  45. Fornander T, Rutqvist LE, Cedermark B et al (1989) Adjuvant tamoxifen in early breast cancer: occurrence of new primary cancers. Lancet 1:117–120

    Article  CAS  PubMed  Google Scholar 

  46. Fisher B, Costantino JP, Redmond CK et al (1994) Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst 86:527–537

    Article  CAS  PubMed  Google Scholar 

  47. Han XL, Liehr JG (1992) Induction of covalent DNA adducts in rodents by tamoxifen. Cancer Res 52:1360–1363

    CAS  PubMed  Google Scholar 

  48. Rutqvist LE, Johansson H, Signomklao T et al (1995) Adjuvant tamoxifen therapy for early stage breast cancer and second primary malignancies. Stockholm Breast Cancer Study Group. J Natl Cancer Inst 87:645–651

    Article  CAS  PubMed  Google Scholar 

  49. Styles JA, Davies A, Lim CK et al (1994) Genotoxicity of tamoxifen, tamoxifen epoxide and toremifene in human lymphoblastoid cells containing human cytochrome P450s. Carcinogenesis 15:5–9

    Article  CAS  PubMed  Google Scholar 

  50. Lim CK, Yuan ZX, Lamb JH et al (1994) A comparative study of tamoxifen metabolism in female rat, mouse and human liver microsomes. Carcinogenesis 15:589–593

    Article  CAS  PubMed  Google Scholar 

  51. Moorthy B, Sriram P, Pathak DN et al (1996) Tamoxifen metabolic activation: comparison of DNA adducts formed by microsomal and chemical activation of tamoxifen and 4-hydroxytamoxifen with DNA adducts formed in vivo. Cancer Res 56:53–57

    CAS  PubMed  Google Scholar 

  52. Pongracz K, Pathak DN, Nakamura T et al (1995) Activation of the tamoxifen derivative metabolite E to form DNA adducts: comparison with the adducts formed by microsomal activation of tamoxifen. Cancer Res 55:3012–3015

    CAS  PubMed  Google Scholar 

  53. Potter GA, McCague R, Jarman M (1994) A mechanistic hypothesis for DNA adduct formation by tamoxifen following hepatic oxidative metabolism. Carcinogenesis 15:439–442

    Article  CAS  PubMed  Google Scholar 

  54. Phillips DH, Carmichael PL, Hewer A et al (1994) alpha-Hydroxytamoxifen, a metabolite of tamoxifen with exceptionally high DNA-binding activity in rat hepatocytes. Cancer Res 54:5518–5522

    CAS  PubMed  Google Scholar 

  55. Phillips DH, Potter GA, Horton MN et al (1994) Reduced genotoxicity of [D5-ethyl]-tamoxifen implicates alpha-hydroxylation of the ethyl group as a major pathway of tamoxifen activation to a liver carcinogen. Carcinogenesis 15:1487–1492

    Article  CAS  PubMed  Google Scholar 

  56. Osborne MR, Hewer A, Hardcastle IR et al (1996) Identification of the major tamoxifen-deoxyguanosine adduct formed in the liver DNA of rats treated with tamoxifen. Cancer Res 56:66–71

    CAS  PubMed  Google Scholar 

  57. Phillips DH, Carmichael PL, Hewer A et al (1996) Activation of tamoxifen and its metabolite alpha-hydroxytamoxifen to DNA-binding products: comparisons between human, rat and mouse hepatocytes. Carcinogenesis 17:89–94

    Article  CAS  PubMed  Google Scholar 

  58. Osborne MR, Hewer A, Phillips DH (2001) Resolution of alpha-hydroxytamoxifen; R-isomer forms more DNA adducts in rat liver cells. Chem Res Toxicol 14:888–893

    Article  CAS  PubMed  Google Scholar 

  59. Osborne MR, Hewer A, Phillips DH (2004) Stereoselective metabolic activation of alpha-hydroxy-N-desmethyltamoxifen: the R-isomer forms more DNA adducts in rat liver cells. Chem Res Toxicol 17:697–701

    Article  CAS  PubMed  Google Scholar 

  60. Phillips DH (2001) Understanding the genotoxicity of tamoxifen? Carcinogenesis 22:839–849

    Article  CAS  PubMed  Google Scholar 

  61. Jordan VC (1995) What if tamoxifen (ICI 46,474) had been found to produce rat liver tumors in 1973? A personal perspective. Ann Oncol 6:29–34

    Article  CAS  PubMed  Google Scholar 

  62. Jordan VC, Gradishar WJ (1997) Molecular mechanisms and future uses of antiestrogens. Mol Aspects Med 18:167–247

    Article  CAS  PubMed  Google Scholar 

  63. Jordan VC (1984) Biochemical pharmacology of antiestrogen action. Pharmacol Rev 36:245–276

    CAS  PubMed  Google Scholar 

  64. Jordan VC (1988) Chemosuppression of breast cancer with tamoxifen: laboratory evidence and future clinical investigations. Cancer Invest 6:589–595

    Article  CAS  PubMed  Google Scholar 

  65. Lerner LJ, Jordan VC (1990) Development of antiestrogens and their use in breast cancer: eighth Cain memorial award lecture. Cancer Res 50:4177–4189

    CAS  PubMed  Google Scholar 

  66. Jordan VC (2001) Selective estrogen receptor modulation: a personal perspective. Cancer Res 61:5683–5687

    CAS  PubMed  Google Scholar 

  67. Jordan VC (2003) Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J Med Chem 46:1081–1111

    Article  CAS  PubMed  Google Scholar 

  68. Ariazi EA, Ariazi JL, Cordera F, Jordan VC et al (2006) Estrogen receptors as therapeutic targets in breast cancer. Curr Top Med Chem 6:195–216

    Article  Google Scholar 

  69. Buzdar AU, Marcus C, Holmes F et al (1988) Phase II evaluation of Ly156758 in metastatic breast cancer. Oncology 45:344–345

    Article  CAS  PubMed  Google Scholar 

  70. Snyder KR, Sparano N, Malinowski JM (2000) Raloxifene hydrochloride. Am J Health Syst Pharm 57:1669–1675, quiz 76–8

    CAS  PubMed  Google Scholar 

  71. Kemp DC, Fan PW, Stevens JC (2002) Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to presystemic clearance. Drug Metab Dispos 30:694–700

    Article  CAS  PubMed  Google Scholar 

  72. Jeong EJ, Liu Y, Lin H, Hu M (2005) Species- and disposition model-dependent metabolism of raloxifene in gut and liver: role of UGT1A10. Drug Metab Dispos 33:785–794

    Article  CAS  PubMed  Google Scholar 

  73. Suh N, Lamph WW, Glasebrook AL et al (2002) Prevention and treatment of experimental breast cancer with the combination of a new selective estrogen receptor modulator, arzoxifene, and a new rexinoid, LG 100268. Clin Cancer Res 8:3270–3275

    CAS  PubMed  Google Scholar 

  74. Baselga J, Llombart-Cussac A, Bellet M et al (2003) Randomized, double-blind, multicenter trial comparing two doses of arzoxifene (LY353381) in hormone-sensitive advanced or metastatic breast cancer patients. Ann Oncol 14:1383–1390

    Article  CAS  PubMed  Google Scholar 

  75. Buzdar A, O’Shaughnessy JA, Booser DJ et al (2003) Phase II, randomized, double-blind study of two dose levels of arzoxifene in patients with locally advanced or metastatic breast cancer. J Clin Oncol 21:1007–1014

    Article  CAS  PubMed  Google Scholar 

  76. Bolognese M, Krege JH, Utian WH et al (2009) Effects of arzoxifene on bone mineral density and endometrium in postmenopausal women with normal or low bone mass. J Clin Endocrinol Metab 94:2284–2289

    Article  CAS  PubMed  Google Scholar 

  77. Downs RW Jr, Moffett AM, Ghosh A et al (2010) Effects of arzoxifene on bone, lipid markers, and safety parameters in postmenopausal women with low bone mass. Osteoporos Int 21:1215–1226

    Article  CAS  PubMed  Google Scholar 

  78. Kendler DL, Palacios S, Cox DA et al (2012) Arzoxifene versus raloxifene: effect on bone and safety parameters in postmenopausal women with osteoporosis. Osteoporos Int 23:1091–1101

    Google Scholar 

  79. Falany JL, Pilloff DE, Leyh TS, Falany CN (2006) Sulfation of raloxifene and 4-hydroxytamoxifen by human cytosolic sulfotransferases. Drug Metab Dispos 34:361–368

    CAS  PubMed  Google Scholar 

  80. Rosati RL, Da Silva JP, Cameron KO et al (1998) Discovery and preclinical pharmacology of a novel, potent, nonsteroidal estrogen receptor agonist/antagonist, CP-336156, a diaryltetrahydronaphthalene. J Med Chem 41:2928–2931

    Article  CAS  PubMed  Google Scholar 

  81. Ke HZ, Paralkar VM, Grasser WA et al (1998) Effects of CP-336,156, a new, nonsteroidal estrogen agonist/antagonist, on bone, serum cholesterol, uterus and body composition in rat models. Endocrinology 139:2068–2076

    Article  CAS  PubMed  Google Scholar 

  82. Ke HZ, Qi H, Crawford DT et al (2000) Lasofoxifene (CP-336,156), a selective estrogen receptor modulator, prevents bone loss induced by aging and orchidectomy in the adult rat. Endocrinology 141:1338–1344

    Article  CAS  PubMed  Google Scholar 

  83. Tatee T, Carlson KE, Katzenellenbogen JA et al (1979) Antiestrogens and antiestrogen metabolites: preparation of tritium-labeled (+/−)-cis-3-[p-(1,2,3,4-tetrahydro-6-methoxy-2-phenyl-1-naphthyl)phenoxyl]-1,2-propanediol (U-23469) and characterization and synthesis of a biologically important metabolite. J Med Chem 22:1509–1517

    Article  CAS  PubMed  Google Scholar 

  84. Legha SS, Slavik M, Carter SK (1976) Nafoxidine–an antiestrogen for the treatment of breast cancer. Cancer 38:1535–1541

    Article  CAS  PubMed  Google Scholar 

  85. Cohen LA, Pittman B, Wang CX et al (2001) LAS, a novel selective estrogen receptor modulator with chemopreventive and therapeutic activity in the N-nitroso-N-methylurea-induced rat mammary tumor model. Cancer Res 61:8683–8688

    CAS  PubMed  Google Scholar 

  86. Robertson DW, Katzenellenbogen JA, Hayes JR, Katzenellenbogen BS (1982) Antiestrogen basicity–activity relationships: a comparison of the estrogen receptor binding and antiuterotrophic potencies of several analogues of (Z)-1,2-diphenyl-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-butene (tamoxifen, Nolvadex) having altered basicity. J Med Chem 25:167–171

    Article  CAS  PubMed  Google Scholar 

  87. Hellmann-Blumberg U, Taras TL, Wurz GT, DeGregorio MW et al (2000) Genotoxic effects of the novel mixed antiestrogen FC-1271a in comparison to tamoxifen and toremifene. Breast Cancer Res Treat 60:63–70

    Article  CAS  PubMed  Google Scholar 

  88. Qu Q, Zheng H, Dahllund J et al (2000) Selective estrogenic effects of a novel triphenylethylene compound, FC1271a, on bone, cholesterol level, and reproductive tissues in intact and ovariectomized rats. Endocrinology 141:809–820

    Article  CAS  PubMed  Google Scholar 

  89. DeGregorio MW, Wurz GT, Taras TL et al (2000) Pharmacokinetics of (deaminohydroxy)toremifene in humans: a new, selective estrogen-receptor modulator. Eur J Clin Pharmacol 56:469–475

    Article  CAS  PubMed  Google Scholar 

  90. Rutanen EM, Heikkinen J, Halonen K et al (2003) Effects of ospemifene, a novel SERM, on hormones, genital tract, climacteric symptoms, and quality of life in postmenopausal women: a double-blind, randomized trial. Menopause 10:433–439

    Article  PubMed  Google Scholar 

  91. Komi J, Lankinen KS, Harkonen P et al (2005) Effects of ospemifene and raloxifene on hormonal status, lipids, genital tract, and tolerability in postmenopausal women. Menopause 12:202–209

    Article  PubMed  Google Scholar 

  92. Namba R, Young LJ, Maglione JE et al (2005) Selective estrogen receptor modulators inhibit growth and progression of premalignant lesions in a mouse model of ductal carcinoma in situ. Breast Cancer Res 7:R881–R889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wurz GT, Read KC, Marchisano-Karpman C et al (2005) Ospemifene inhibits the growth of dimethylbenzanthracene-induced mammary tumors in Sencar mice. J Steroid Biochem Mol Biol 97:230–240

    Article  CAS  PubMed  Google Scholar 

  94. Dehal SS, Kupfer D (1997) CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 57:3402–3406

    CAS  PubMed  Google Scholar 

  95. Beverage JN, Sissung TM, Sion AM et al (2007) CYP2D6 polymorphisms and the impact on tamoxifen therapy. J Pharm Sci 96:2224–2231

    Article  CAS  PubMed  Google Scholar 

  96. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3:229–243

    Article  CAS  PubMed  Google Scholar 

  97. Raimundo S, Toscano C, Klein K et al (2004) A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther 76:128–138

    Article  CAS  PubMed  Google Scholar 

  98. Hanioka N, Kimura S, Meyer UA, Gonzalez FJ (1990) The human CYP2D locus associated with a common genetic defect in drug oxidation: a G1934––A base change in intron 3 of a mutant CYP2D6 allele results in an aberrant 3′ splice recognition site. Am J Hum Genet 47:994–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bernard S, Neville KA, Nguyen AT, Flockhart DA (2006) Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist 11:126–135

    Article  CAS  PubMed  Google Scholar 

  100. Lim YC, Desta Z, Flockhart DA, Skaar TC (2005) Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55:471–478

    Article  CAS  PubMed  Google Scholar 

  101. Lim YC, Li L, Desta Z et al (2006) Endoxifen, a secondary metabolite of tamoxifen, and 4-OH-tamoxifen induce similar changes in global gene expression patterns in MCF-7 breast cancer cells. J Pharmacol Exp Ther 318:503–512

    Article  CAS  PubMed  Google Scholar 

  102. Stearns V, Johnson MD, Rae JM et al (2003) Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 95:1758–1764

    Article  CAS  PubMed  Google Scholar 

  103. Jin Y, Desta Z, Stearns V et al (2005) CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97:30–39

    Article  CAS  PubMed  Google Scholar 

  104. Fisher B, Costantino J, Redmond C et al (1989) A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med 320:479–484

    Article  CAS  PubMed  Google Scholar 

  105. Fisher B, Dignam J, Wolmark N et al (1999) Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 353:1993–2000

    Article  CAS  PubMed  Google Scholar 

  106. Fisher B, Costantino JP, Wickerham DL et al (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90:1371–1388

    Article  CAS  PubMed  Google Scholar 

  107. Loprinzi CL, Kugler JW, Sloan JA et al (2000) Venlafaxine in management of hot flashes in survivors of breast cancer: a randomised controlled trial. Lancet 356:2059–2063

    Article  CAS  PubMed  Google Scholar 

  108. Loprinzi CL, Sloan JA, Perez EA et al (2002) Phase III evaluation of fluoxetine for treatment of hot flashes. J Clin Oncol 20:1578–1583

    Article  CAS  PubMed  Google Scholar 

  109. Stearns V, Beebe KL, Iyengar M, Dube E (2003) Paroxetine controlled release in the treatment of menopausal hot flashes: a randomized controlled trial. JAMA 289:2827–2834

    Article  CAS  PubMed  Google Scholar 

  110. Crewe HK, Ellis SW, Lennard MS, Tucker GT (1997) Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol 53:171–178

    Article  CAS  PubMed  Google Scholar 

  111. Coller JK, Krebsfaenger N, Klein K et al (2002) The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br J Clin Pharmacol 54:157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lessard E, Yessine MA, Hamelin BA et al (2001) Diphenhydramine alters the disposition of venlafaxine through inhibition of CYP2D6 activity in humans. J Clin Psychopharmacol 21:175–184

    Article  CAS  PubMed  Google Scholar 

  113. Albers LJ, Reist C, Vu RL et al (2000) Effect of venlafaxine on imipramine metabolism. Psychiatry Res 96:235–243

    Article  CAS  PubMed  Google Scholar 

  114. Yoon YR, Cha IJ, Shon JH et al (2000) Relationship of paroxetine disposition to metoprolol metabolic ratio and CYP2D6*10 genotype of Korean subjects. Clin Pharmacol Ther 67:567–576

    Article  CAS  PubMed  Google Scholar 

  115. Jeppesen U, Gram LF, Vistisen K et al (1996) Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 51:73–78

    Article  CAS  PubMed  Google Scholar 

  116. Andersson T, Flockhart DA, Goldstein DB et al (2005) Drug-metabolizing enzymes: evidence for clinical utility of pharmacogenomic tests. Clin Pharmacol Ther 78:559–581

    Article  CAS  PubMed  Google Scholar 

  117. Borges S, Desta Z, Li L et al (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80:61–74

    Article  CAS  PubMed  Google Scholar 

  118. Dieudonne AS, Lambrechts D, Claes B et al (2009) Prevalent breast cancer patients with a homozygous mutant status for CYP2D6*4: response and biomarkers in tamoxifen users. Breast Cancer Res Treat 118:531–538

    Article  CAS  PubMed  Google Scholar 

  119. Schroth W, Goetz MP, Hamann U et al (2009) Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302:1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kiyotani K, Mushiroda T, Imamura CK et al (2010) Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J Clin Oncol 28:1287–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lammers LA, Mathijssen RH, van Gelder T et al (2010) The impact of CYP2D6-predicted phenotype on tamoxifen treatment outcome in patients with metastatic breast cancer. Br J Cancer 103:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Madlensky L, Natarajan L, Tchu S et al (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89:718–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lash TL, Cronin-Fenton D, Ahern TP et al (2011) CYP2D6 inhibition and breast cancer recurrence in a population-based study in Denmark. J Natl Cancer Inst 103:489–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Regan MM, Leyland-Jones B, Bouzyk M et al (2012) CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1–98 trial. J Natl Cancer Inst 104:441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rae JM, Drury S, Hayes DF et al (2012) CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst 104:452–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brauch H, Schroth W, Goetz MP et al (2013) Tamoxifen use in postmenopausal breast cancer: CYP2D6 matters. J Clin Oncol 31(2):176–180

    Article  CAS  PubMed  Google Scholar 

  127. Lim JS, Chen XA, Singh O et al (2011) Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol 71:737–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Murdter TE, Schroth W, Bacchus-Gerybadze L et al (2011) Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 89:708–717

    Article  CAS  PubMed  Google Scholar 

  129. Jordan VC, Fritz NF, Tormey DC (1987) Endocrine effects of adjuvant chemotherapy and long-term tamoxifen administration on node-positive patients with breast cancer. Cancer Res 47:624–630

    CAS  PubMed  Google Scholar 

  130. Ravdin PM, Fritz NF, Tormey DC, Jordan VC (1988) Endocrine status of premenopausal node-positive breast cancer patients following adjuvant chemotherapy and long-term tamoxifen. Cancer Res 48:1026–1029

    CAS  PubMed  Google Scholar 

  131. Irvin WJ Jr, Walko CM, Weck KE et al (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 29:3232–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Barginear MF, Jaremko M, Peter I et al (2011) Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: effect on active metabolite isomers and the antiestrogenic activity score. Clin Pharmacol Ther 90:605–611

    Article  CAS  PubMed  Google Scholar 

  133. Kiyotani K, Mushiroda T, Imamura CK et al (2012) Dose-adjustment study of tamoxifen based on CYP2D6 genotypes in Japanese breast cancer patients. Breast Cancer Res Treat 131:137–145

    Article  CAS  PubMed  Google Scholar 

  134. Jordan VC (1976) Antiestrogenic and antitumor properties of tamoxifen in laboratory animals. Cancer Treat Rep 60:1409–1419

    CAS  PubMed  Google Scholar 

  135. Jordan VC, Allen KE (1980) Evaluation of the antitumour activity of the non-steroidal antioestrogen monohydroxytamoxifen in the DMBA-induced rat mammary carcinoma model. Eur J Cancer 16:239–251

    Article  CAS  PubMed  Google Scholar 

  136. Rouanet P, Linares-Cruz G, Dravet F et al (2005) Neoadjuvant percutaneous 4-hydroxytamoxifen decreases breast tumoral cell proliferation: a prospective controlled randomized study comparing three doses of 4-hydroxytamoxifen gel to oral tamoxifen. J Clin Oncol 23:2980–2987

    Article  CAS  PubMed  Google Scholar 

  137. Jordan VC, Fenuik L, Allen KE et al (1981) Structural derivatives of tamoxifen and oestradiol 3-methyl ether as potential alkylating antioestrogens. Eur J Cancer 17:193–200

    Article  CAS  PubMed  Google Scholar 

  138. Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867–3873

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Maximov, P.Y., McDaniel, R.E., Jordan, V.C. (2013). Metabolites of Tamoxifen as the Basis of Drug Development. In: Tamoxifen. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0664-0_3

Download citation

Publish with us

Policies and ethics