Skip to main content

The Legacy of Tamoxifen

  • Chapter
  • First Online:
Tamoxifen

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 1427 Accesses

Abstract

Tamoxifen, the first targeted therapy to treat breast cancer, has dramatically changed medicine. Study of the pharmacology of tamoxifen created a successful adjuvant treatment strategy to save lives, created the first chemopreventive to prevent any cancer in humans, and was the pioneering selective estrogen receptor modulator (SERM) that resulted in the new drug group, the SERMs. New agents such as lasofoxifene and bazedoxifene show promise in the range of beneficial effects they demonstrate in clinical trial to treat multiple diseases in women. Additionally, new agents and approaches with conjugated equine estrogen are being explored to prevent hot flashes, thereby enhancing the likelihood that compliance with SERMs improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gradishar WJ, Jordan VC (1997) Clinical potential of new antiestrogens. J Clin Oncol 15:840–852

    Article  CAS  PubMed  Google Scholar 

  2. Stein S, Zoltick B, Peacock T et al (2001) Phase II trial of toremifene in androgen-independent prostate cancer: a Penn cancer clinical trials group trial. Am J Clin Oncol 24:283–285

    Article  CAS  PubMed  Google Scholar 

  3. Raghow S, Hooshdaran MZ, Katiyar S, Steiner MS (2002) Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res 62:1370–1376

    CAS  PubMed  Google Scholar 

  4. Lerner LJ, Holthaus FJ Jr, Thompson CR (1958) A non-steroidal estrogen antiagonist 1-(p-2-diethylaminoethoxyphenyl)-1-phenyl-2-p-methoxyphenyl ethanol. Endocrinology 63:295–318

    Article  CAS  PubMed  Google Scholar 

  5. Jordan VC, Collins MM, Rowsby L, Prestwich G (1977) A monohydroxylated metabolite of tamoxifen with potent antioestrogenic activity. J Endocrinol 75:305–316

    Article  CAS  PubMed  Google Scholar 

  6. Wakeling AE (1994) A new approach to breast cancer therapy-total estrogen ablation with pure antiestrogens. In: Jordan VC (ed) Long-term tamoxifen treatment for breast cancer. University of Wisconsin Press, Madison, pp 219–234

    Google Scholar 

  7. Jordan VC, Fenuik L, Allen KE et al (1981) Structural derivatives of tamoxifen and oestradiol 3-methyl ether as potential alkylating antioestrogens. Eur J Cancer 17:193–200

    Article  CAS  PubMed  Google Scholar 

  8. Bucourt R, Vignau M, Torelli V (1978) New biospecific adsorbents for the purification of estradiol receptor. J Biol Chem 253:8221–8228

    CAS  PubMed  Google Scholar 

  9. Wakeling AE, Bowler J (1987) Steroidal pure antioestrogens. J Endocrinol 112:R7–R10

    Article  CAS  PubMed  Google Scholar 

  10. Bowler J, Lilley TJ, Pittam JD, Wakeling AE (1989) Novel steroidal pure antiestrogens. Steroids 54:71–99

    Article  CAS  PubMed  Google Scholar 

  11. Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867–3873

    CAS  PubMed  Google Scholar 

  12. Osborne CK, Pippen J, Jones SE et al (2002) Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. J Clin Oncol 20:3386–3395

    Article  CAS  PubMed  Google Scholar 

  13. Howell A, Robertson JF, Quaresma Albano J et al (2002) Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J Clin Oncol 20:3396–3403

    Article  CAS  PubMed  Google Scholar 

  14. Mehta RS, Barlow WE, Albain KS et al (2012) Combination anastrozole and fulvestrant in metastatic breast cancer. N Engl J Med 367:435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bergh J, Jonsson PE, Lidbrink EK et al (2012) FACT: an open-label randomized phase III study of fulvestrant and anastrozole in combination compared with anastrozole alone as first-line therapy for patients with receptor-positive postmenopausal breast cancer. J Clin Oncol 30:1919–1925

    Article  CAS  PubMed  Google Scholar 

  16. Howell A, DeFriend DJ, Robertson JF et al (1996) Pharmacokinetics, pharmacological and anti-tumour effects of the specific anti-oestrogen ICI 182780 in women with advanced breast cancer. Br J Cancer 74:300–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Leo A, Jerusalem G, Petruzelka L et al (2010) Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J Clin Oncol 28:4594–4600

    Article  PubMed  Google Scholar 

  18. Brodie AM, Schwarzel WC, Shaikh AA, Brodie HJ (1977) The effect of an aromatase inhibitor, 4-hydroxy-4-androstene-3,17-dione, on estrogen-dependent processes in reproduction and breast cancer. Endocrinology 100:1684–1695

    Article  CAS  PubMed  Google Scholar 

  19. Brodie AM, Longcope C (1980) Inhibition of peripheral aromatization by aromatase inhibitors, 4-hydroxy- and 4-acetoxy-androstene-3,17-dione. Endocrinology 106:19–21

    Article  CAS  PubMed  Google Scholar 

  20. Brodie AM, Marsh D, Brodie HJ (1979) Aromatase inhibitors – IV. Regression of hormone-dependent, mammary tumors in the rat with 4-acetoxy-4-androstene-3,17-dione. J Steroid Biochem 10:423–429

    Article  CAS  PubMed  Google Scholar 

  21. Coombes RC, Goss P, Dowsett M et al (1984) 4-hydroxyandrostenedione in treatment of postmenopausal patients with advanced breast cancer. Lancet 2:1237–1239

    Article  CAS  PubMed  Google Scholar 

  22. Baum M, Budzar AU, Cuzick J et al (2002) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359:2131–2139

    Article  CAS  PubMed  Google Scholar 

  23. Howell A, Cuzick J, Baum M et al (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365:60–62

    Article  CAS  PubMed  Google Scholar 

  24. Thurlimann B, Keshaviah A, Coates AS et al (2005) A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med 353:2747–2757

    Article  PubMed  Google Scholar 

  25. Coates AS, Keshaviah A, Thurlimann B et al (2007) Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol 25:486–492

    Article  CAS  PubMed  Google Scholar 

  26. Coombes RC, Hall E, Gibson LJ et al (2004) A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 350:1081–1092

    Article  CAS  PubMed  Google Scholar 

  27. Boccardo F, Rubagotti A, Puntoni M et al (2005) Switching to anastrozole versus continued tamoxifen treatment of early breast cancer: preliminary results of the Italian Tamoxifen Anastrozole Trial. J Clin Oncol 23:5138–5147

    Article  CAS  PubMed  Google Scholar 

  28. Goss PE, Ingle JN, Martino S et al (2003) A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 349:1793–1802

    Article  CAS  PubMed  Google Scholar 

  29. Goss PE, Ingle JN, Martino S et al (2005) Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J Natl Cancer Inst 97:1262–1271

    Article  CAS  PubMed  Google Scholar 

  30. Goss PE, Ingle JN, Ales-Martinez JE et al (2011) Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 364:2381–2391

    Article  CAS  PubMed  Google Scholar 

  31. Dowsett M, Cuzick J, Ingle J et al (2010) Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 28:509–518

    Article  CAS  PubMed  Google Scholar 

  32. Roop RP, Ma CX (2012) Endocrine resistance in breast cancer: molecular pathways and rational development of targeted therapies. Future Oncol 8:273–292

    Article  CAS  PubMed  Google Scholar 

  33. Riemsma R, Forbes CA, Amonkar MM et al (2012) Systematic review of lapatinib in combination with letrozole compared with other first-line treatments for hormone receptor positive(HR+) and HER2+ advanced or metastatic breast cancer(MBC). Curr Med Res Opin 28:1263–1279

    Article  CAS  PubMed  Google Scholar 

  34. Bachelot T, Bourgier C, Cropet C et al (2012) Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast sancer with prior exposure to aromatase inhibitors: A GINECO study. J Clin Oncol 30:2718–2724

    Article  CAS  PubMed  Google Scholar 

  35. Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529

    Article  CAS  PubMed  Google Scholar 

  36. Baselga J, Semiglazov V, van Dam P et al (2009) Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol 27:2630–2637

    Article  CAS  PubMed  Google Scholar 

  37. Lednicer D, Babcock JC, Marlatt PE et al (1965) Mammalian antifertility agents. I. Derivatives of 2,3-diphenylindenes. J Med Chem 8:52–57

    Article  CAS  PubMed  Google Scholar 

  38. Lednicer D, Lyster SC, Aspergren BD, Duncan GW (1966) Mammalian antifertility agents. 3. 1-aryl-2-phenyl-1,2,3,4-tetrahydro-1-naphthols, 1-aryl-2-phenyl-3,4-dihydronaphthalenes, and their derivatives. J Med Chem 9:172–176

    Article  CAS  PubMed  Google Scholar 

  39. Lednicer D, Lyster SC, Duncan GW (1967) Mammalian antifertility agents. IV. Basic 3,4-dihydronaphthalenes and 1,2,3,4-tetrahydro-1-naphthols. J Med Chem 10:78–84

    Article  CAS  PubMed  Google Scholar 

  40. Legha SS, Slavik M, Carter SK (1976) Nafoxidine – an antiestrogen for the treatment of breast cancer. Cancer 38:1535–1541

    Article  CAS  PubMed  Google Scholar 

  41. Ke HZ, Paralkar VM, Grasser WA et al (1998) Effects of CP-336,156, a new, nonsteroidal estrogen agonist/antagonist, on bone, serum cholesterol, uterus and body composition in rat models. Endocrinology 139:2068–2076

    Article  CAS  PubMed  Google Scholar 

  42. Ke HZ, Qi H, Crawford DT et al (2000) Lasofoxifene (CP-336,156), a selective estrogen receptor modulator, prevents bone loss induced by aging and orchidectomy in the adult rat. Endocrinology 141:1338–1344

    Article  CAS  PubMed  Google Scholar 

  43. Ke HZ, Qi H, Chidsey-Frink KL et al (2001) Lasofoxifene (CP-336,156) protects against the age-related changes in bone mass, bone strength, and total serum cholesterol in intact aged male rats. J Bone Miner Res 16:765–773

    Article  CAS  PubMed  Google Scholar 

  44. Ke HZ, Foley GL, Simmons HA et al (2004) Long-term treatment of lasofoxifene preserves bone mass and bone strength and does not adversely affect the uterus in ovariectomized rats. Endocrinology 145:1996–2005

    Article  CAS  PubMed  Google Scholar 

  45. Vajdos FF, Hoth LR, Geoghegan KF et al (2007) The 2.0 A crystal structure of the ERalpha ligand-binding domain complexed with lasofoxifene. Protein Sci 16:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shiau AK, Barstad D, Loria PM et al (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    Article  CAS  PubMed  Google Scholar 

  47. Brzozowski AM, Pike AC, Dauter Z et al (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758

    Article  CAS  PubMed  Google Scholar 

  48. Cummings SR, Ensrud K, Delmas PD et al (2010) Lasofoxifene in postmenopausal women with osteoporosis. N Engl J Med 362:686–696

    Article  CAS  PubMed  Google Scholar 

  49. Moffett A, Ettinger M, Bolognese M et al (2004) Lasofoxifene, a next generation SERM, is effective in preventing loss of BMD and reducing LDL-C in postmenopausal women. J Bone Miner Res 19:S96

    Article  Google Scholar 

  50. LaCroix AZ, Powles T, Osborne CK et al (2010) Breast cancer incidence in the randomized PEARL trial of lasofoxifene in postmenopausal osteoporotic women. J Natl Cancer Inst 102:1706–1715

    Article  CAS  PubMed  Google Scholar 

  51. Lerner LJ, Jordan VC (1990) Development of antiestrogens and their use in breast cancer: eighth Cain memorial award lecture. Cancer Res 50:4177–4189

    CAS  PubMed  Google Scholar 

  52. Gennari L (2009) Lasofoxifene, a new selective estrogen receptor modulator for the treatment of osteoporosis and vaginal atrophy. Expert Opin Pharmacother 10:2209–2220

    Article  CAS  PubMed  Google Scholar 

  53. Robinson SP, Jordan VC (1987) Reversal of the antitumor effects of tamoxifen by progesterone in the 7,12-dimethylbenzanthracene-induced rat mammary carcinoma model. Cancer Res 47:5386–5390

    CAS  PubMed  Google Scholar 

  54. Jabara AG, Toyne PH, Harcourt AG (1973) Effects of time and duration of progesterone administration on mammary tumours induced by 7,12-dimethylbenz(a)anthracene in Sprague–Dawley rats. Br J Cancer 27:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chan O, Inouye K, Akirav E et al (2005) Insulin alone increases hypothalamo-pituitary-adrenal activity, and diabetes lowers peak stress responses. Endocrinology 146:1382–1390

    Article  CAS  PubMed  Google Scholar 

  56. Lewis-Wambi JS, Kim H, Curpan R et al (2011) The selective estrogen receptor modulator bazedoxifene inhibits hormone-independent breast cancer cell growth and down-regulates estrogen receptor alpha and cyclin D1. Mol Pharmacol 80:610–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kanasaki H, Bedecarrats GY, Kam KY et al (2005) Gonadotropin-releasing hormone pulse frequency-dependent activation of extracellular signal-regulated kinase pathways in perifused LbetaT2 cells. Endocrinology 146:5503–5513

    Article  CAS  PubMed  Google Scholar 

  58. Smith S, Minck D, Jolette J et al (2005) Bazedoxifene prevents ovariectomy-induced bone loss in the Cynomolgus monkey. J Bone Miner Res 20:S174

    Article  Google Scholar 

  59. Kharode Y, Bodine PV, Miller CP et al (2008) The pairing of a selective estrogen receptor modulator, bazedoxifene, with conjugated estrogens as a new paradigm for the treatment of menopausal symptoms and osteoporosis prevention. Endocrinology 149:6084–6091

    Article  CAS  PubMed  Google Scholar 

  60. Chang KC, Wang Y, Bodine PV et al (2010) Gene expression profiling studies of three SERMs and their conjugated estrogen combinations in human breast cancer cells: insights into the unique antagonistic effects of bazedoxifene on conjugated estrogens. J Steroid Biochem Mol Biol 118:117–124

    Article  CAS  PubMed  Google Scholar 

  61. Bain RR, Jordan VC (1983) Identification of a new metabolite of tamoxifen in patient serum during breast cancer therapy. Biochem Pharmacol 32:373–375

    Article  CAS  PubMed  Google Scholar 

  62. Jordan VC, Bain RR, Brown RR et al (1983) Determination and pharmacology of a new hydroxylated metabolite of tamoxifen observed in patient sera during therapy for advanced breast cancer. Cancer Res 43:1446–1450

    CAS  PubMed  Google Scholar 

  63. Qu Q, Zheng H, Dahllund J et al (2000) Selective estrogenic effects of a novel triphenylethylene compound, FC1271a, on bone, cholesterol level, and reproductive tissues in intact and ovariectomized rats. Endocrinology 141:809–820

    Article  CAS  PubMed  Google Scholar 

  64. Hellmann-Blumberg U, Taras TL, Wurz GT, DeGregorio MW (2000) Genotoxic effects of the novel mixed antiestrogen FC-1271a in comparison to tamoxifen and toremifene. Breast Cancer Res Treat 60:63–70

    Article  CAS  PubMed  Google Scholar 

  65. Wurz GT, Read KC, Marchisano-Karpman C et al (2005) Ospemifene inhibits the growth of dimethylbenzanthracene-induced mammary tumors in Sencar mice. J Steroid Biochem Mol Biol 97:230–240

    Article  CAS  PubMed  Google Scholar 

  66. Namba R, Young LJ, Maglione JE et al (2005) Selective estrogen receptor modulators inhibit growth and progression of premalignant lesions in a mouse model of ductal carcinoma in situ. Breast Cancer Res 7:R881–R889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wurz GT, Hellmann-Blumberg U, DeGregorio MW (2008) Pharmacologic effects of ospemifene in rhesus macaques: a pilot study. Basic Clin Pharmacol Toxicol 102:552–558

    Article  CAS  PubMed  Google Scholar 

  68. Nilsson S, Gustafsson JA (2011) Estrogen receptors: therapies targeted to receptor subtypes. Clin Pharmacol Ther 89:44–55

    Article  CAS  PubMed  Google Scholar 

  69. Nilsson S, Makela S, Treuter E et al (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565

    CAS  PubMed  Google Scholar 

  70. McInerney EM, Weis KE, Sun J et al (1998) Transcription activation by the human estrogen receptor subtype beta (ER beta) studied with ER beta and ER alpha receptor chimeras. Endocrinology 139:4513–4522

    Article  CAS  PubMed  Google Scholar 

  71. Pike AC, Brzozowski AM, Hubbard RE et al (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J 18:4608–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoekstra WJ, Patel HS, Liang X et al (2005) Discovery of novel quinoline-based estrogen receptor ligands using peptide interaction profiling. J Med Chem 48:2243–2247

    Article  CAS  PubMed  Google Scholar 

  73. Norman BH, Dodge JA, Richardson TI et al (2006) Benzopyrans are selective estrogen receptor beta agonists with novel activity in models of benign prostatic hyperplasia. J Med Chem 49:6155–6157

    Article  CAS  PubMed  Google Scholar 

  74. Follettie MT, Pinard M, Keith JC Jr et al (2006) Organ messenger ribonucleic acid and plasma proteome changes in the adjuvant-induced arthritis model: responses to disease induction and therapy with the estrogen receptor-beta selective agonist ERB-041. Endocrinology 147:714–723

    Article  CAS  PubMed  Google Scholar 

  75. Jain N, Xu J, Kanojia RM et al (2009) Identification and structure-activity relationships of chromene-derived selective estrogen receptor modulators for treatment of postmenopausal symptoms. J Med Chem 52:7544–7569

    Article  CAS  PubMed  Google Scholar 

  76. Wallace OB, Lauwers KS, Dodge JA et al (2006) A selective estrogen receptor modulator for the treatment of hot flushes. J Med Chem 49:843–846

    Article  CAS  PubMed  Google Scholar 

  77. Mohler ML, Bohl CE, Jones A et al (2009) Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem 52:3597–3617

    Article  CAS  PubMed  Google Scholar 

  78. Chabbert-Buffet N, Meduri G, Bouchard P, Spitz IM (2005) Selective progesterone receptor modulators and progesterone antagonists: mechanisms of action and clinical applications. Hum Reprod Update 11:293–307

    Article  CAS  PubMed  Google Scholar 

  79. Hudson AR, Roach SL, Higuchi RI (2008) Recent developments in the discovery of selective glucocorticoid receptor modulators (SGRMs). Curr Top Med Chem 8:750–765

    Article  CAS  PubMed  Google Scholar 

  80. Baxter JD, Funder JW, Apriletti JW, Webb P (2004) Towards selectively modulating mineralocorticoid receptor function: lessons from other systems. Mol Cell Endocrinol 217:151–165

    Article  CAS  PubMed  Google Scholar 

  81. Yoshihara HA, Scanlan TS (2003) Selective thyroid hormone receptor modulators. Curr Top Med Chem 3:1601–1616

    Article  CAS  PubMed  Google Scholar 

  82. Berger JP, Petro AE, Macnaul KL et al (2003) Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. Mol Endocrinol 17:662–676

    Article  CAS  PubMed  Google Scholar 

  83. Jordan VC (2009) A century of deciphering the control mechanisms of sex steroid action in breast and prostate cancer: the origins of targeted therapy and chemoprevention. Cancer Res 69:1243–1254

    Article  CAS  PubMed  Google Scholar 

  84. Speroff L (2009) A good man: Gregory Goodwin Pincus: the man, his story, the birth control pill. Arnica Pub., Portland, xxi, 359 pp

    Google Scholar 

  85. Jordan VC (2006) Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol 147(Suppl 1):S269–S276

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Maximov, P.Y., McDaniel, R.E., Jordan, V.C. (2013). The Legacy of Tamoxifen. In: Tamoxifen. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0664-0_10

Download citation

Publish with us

Policies and ethics