Skip to main content

Studying Protein Interior with Fractal Dimension

  • Chapter
  • First Online:
Fractal Symmetry of Protein Interior

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

Abstract

Here we look at the interior of protein structures, as viewed through the prism of fractal dimensions. History of application of fractal dimension-based constructs to probe protein interior dates back to the development of theory of fractal dimension itself. Numerous approaches have been tried and tested over a course of 30 years. All of these bring to light some or the other facet of symmetry of self-similarity prevalent in protein interior. Later half of the last decade, especially, has been phenomenal; in terms of the works that innovatively stretched the limits of fractal dimension-based studies to present an array of unexpected results about biophysical properties of protein interior. Here, starting from the fundamental of fractals, we will learn about the commonality (and the lack of it) between various approaches, before exploring the patterns in the results that they have produced. Clustering these approaches in major schools of protein self-similarity studies, we will attempt to describe the evolution of fractal dimension-based methodologies. Then, after attempting to work out the genealogy of approaches (and results), we will learn about certain inherent limitations of fractal constructs. Finally, we will attempt to identify the areas and specific questions where the implementation of fractal dimension-based constructs can be of paramount help to unearth latent information about protein structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams CF, Lee NK, Obukhov SP (2002) Collapse dynamics of a polymer chain: theory and simulation. Europhys Lett 59(3):391–397

    Article  CAS  Google Scholar 

  • Agashe VR, Shastry MCR, Udgaonkar JB (1995) Initial hydrophobic collapse in the folding of barstar. Nature (London) 377: 754

    Google Scholar 

  • Akiyama S et al. (2002) Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering. Proc Natl Acad Sci USA 99(3):1329–1334

    Google Scholar 

  • Alexander S, Orbach R (1982) Density of states of fractals: `fractons’. J Phys (France) Lett 43: L625–L631

    Google Scholar 

  • Allen JP, Colvin JT, Stinson DG, Flynn CP, Stapleton HJ (1982) Protein conformation from electron spin relaxation data. Biophys J 38:299–310

    Article  PubMed  CAS  Google Scholar 

  • Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins: Struct Func Gen 17: 412–425

    Google Scholar 

  • Aqvist J, Luecke H, Quiocho F, Warshel A (1991) Dipoles localized at helix termini of proteins stabilize charges. Proc Natl Acad Sci USA 88:2026–2030

    Article  PubMed  CAS  Google Scholar 

  • Argyrakis P, Kopelman R (1990) Nearest-neighbor distance distribution and self-ordering in diffusion-controlled reactions. Phys Rev A 41:2114–2126

    Article  PubMed  CAS  Google Scholar 

  • Aszodi A, Taylor WR (1993) Connection topology of proteins. Bioinformatics 9:523–529

    Article  CAS  Google Scholar 

  • Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80: 505–515

    Google Scholar 

  • Bagchi B, Fleming GR (1990) Dynamics of activationless reactions in solution. J Phys Chem 94:9–20

    Article  CAS  Google Scholar 

  • Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15:586–592

    Article  PubMed  CAS  Google Scholar 

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    Article  PubMed  CAS  Google Scholar 

  • Bahar I, Atilgan AR, Demirel MC, Erman B (1998) Vibrational dynamics of folded proteins: significance of slow and fast motions in relation to function and stability. Phys Rev Lett 80: 2733–2736

    Google Scholar 

  • Baldwin RL (1989) How does protein folding get started? Trends Biochem Sci 14:291–294

    Article  PubMed  CAS  Google Scholar 

  • Baldwin RL, Rose GD (1999) Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem Sci 24:26–33

    Article  PubMed  CAS  Google Scholar 

  • Banavar JR, Maritan A (2003) Geometrical approach to protein folding: a tube picture. Rev Mod Phys 75: 23–34

    Google Scholar 

  • Banerji A, Ghosh I (2009a) A new computational model to study mass inhomogeneity and hydrophobicity inhomogeneity in proteins. Eur Biophys J 38:577–587

    Article  PubMed  CAS  Google Scholar 

  • Banerji A, Ghosh I (2009b) Revisiting the myths of protein interior: studying proteins with mass-fractal hydrophobicity-fractal and polarizability-fractal dimensions. PLoS ONE 4(10):e7361. doi:10.1371/journal.pone.0007361

    Article  PubMed  CAS  Google Scholar 

  • Banerji A, Ghosh I (2010) Mathematical criteria to observe mesoscopic emergence of protein biochemical properties. J Math Chem 49(3):643–665. doi:10.1007/s10910-010-9760-9

    Article  CAS  Google Scholar 

  • Banerji A, Ghosh I (2011) Fractal symmetry of protein interior: what have we learned? Cell Mol Life Sci 68(16):2711–2737

    Google Scholar 

  • Bashford D, Karplus M (1990) pKas of ionization groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29:10219–10225

    Article  PubMed  CAS  Google Scholar 

  • Ben-Avraham D (1993) Vibrational normal-mode spectrum of globular-proteins. Phys. Rev. B 47:14559–14560

    Article  CAS  Google Scholar 

  • Benney B, Dowrick N, Fisher A, Newmann M (1992) The Theory of critical phenomena. Oxford University Press, Oxford

    Google Scholar 

  • Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide. Protein Data Bank Nat Struct Biol 10:980

    Article  CAS  Google Scholar 

  • Berry H (2002) Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 83:1891–1901

    Article  PubMed  CAS  Google Scholar 

  • Bierzynski A et al (1982) A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc Natl Acad Sci USA 79:2470–2474

    Article  PubMed  CAS  Google Scholar 

  • Binder K (1983) In phase transitions and critical phenomena, vol 10, Domb C, Lebowitz J (ed). Academic, New York

    Google Scholar 

  • Blanco FJ, Jimenez MA, Herrantz J, Rico M, Santoro J, Nieto JL (1993) NMR evidence of a short linear peptide that folds into a ß-hairpin in aqueous solution. J Am Chem Soc 115:5887–5888

    Google Scholar 

  • Blanco FJ, Rivas G, Serrano L (1994) A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struc Biol 1:584–590

    Google Scholar 

  • Bohm G (1991) Protein folding and deterministic chaos: limits of protein folding simulations and calculations. Chaos Solitons Fractals 1:375–382

    Article  Google Scholar 

  • Bohr HG, Wolynes PG (1992) Initial events of protein folding from an information-processing viewpoint. Phys Rev A 46:5242–5248

    Article  PubMed  CAS  Google Scholar 

  • Bouchaud J-P, Georges A (1990) Anomalous diffusion in disordered media. Phys Rep 195(4, 5):127–293

    Google Scholar 

  • Brooks CL, Karplus M, Pettitt BM (1988) Proteins: a theoretical perspective of dynamics, structure and thermodynamics. Wiley, New York

    Google Scholar 

  • Brown JE, Klee WA (1971) Helix-coil transition of the isolated amino terminus of ribonuclease. Biochemistry 10:470–476

    Article  PubMed  CAS  Google Scholar 

  • Bryngelson J (1994) When is a potential accurate enough for structure prediction? Theory and application to a random heteropolymer model of protein folding. J Chem Phys 1994(100):6038–6045

    Article  Google Scholar 

  • Bryngelson JD, Wolynes PG (1987) Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci USA 84:7524–7528

    Article  PubMed  CAS  Google Scholar 

  • Bryngelson JD, Wolynes PG (1989) Intermediates and barrier crossing in the random energy model (with applications to protein folding). J Phys Chem 93:6902–6915

    Article  CAS  Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21(3):167–195

    Google Scholar 

  • Buguin A, Brochart-Wyart F, de Gennes PG (1996) Collapse of a flexible coil in a poor solvent. C R Acad Sci Paris Ser II 322: 741–746

    Google Scholar 

  • Burioni R, Cassi D, Cecconi F, Vulpiani A (2004) Topological thermal instability and length of proteins. Proteins Struct Funct Bioinf 55(3):529–535

    Article  CAS  Google Scholar 

  • Bussemaker HJ, Thirumali D, Bhattacherjee JK (1997) Thermodynamic stability of folded proteins against mutations. Phys Rev Lett 79:3530–3533

    Article  CAS  Google Scholar 

  • Byrne A, Kiernan P, Green D, Dawson K (1995) Kinetics of homopolymer collapse. J Chem Phys 102:573

    Article  CAS  Google Scholar 

  • Bytautas L, Klein DJ, Randic M, Pisanski T (2000) Foldedness in linear polymers: a difference between graphical and Euclidean distances, DIMACS. Ser Discr Math Theor Comput Sci 51:39–61

    Google Scholar 

  • Carlini P, Bizzarri AR, Cannistraro S (2002) Temporal fluctuations in the potential energy of proteins: noise and diffusion. Phys D 165:242–250

    Article  CAS  Google Scholar 

  • Chahine J, Nymeyer H, Leite VBP, Socci ND, Onuchic JN (2002) Specific and nonspecific collapse in protein folding funnels. Phys Rev Lett 88: 168101

    Google Scholar 

  • Chan HS, Dill KA (1991) Polymer principles in protein structure and stability. Annu Rev Biophys Biophys Chem 20:447

    Article  PubMed  CAS  Google Scholar 

  • Chu B, Ying QC, Grosberg AYu (1995) Two-stage kinetics of single chain. Collapse. Polystyrene in Cyclohexane. Macromolecules 28:180–189

    Article  CAS  Google Scholar 

  • Churilla AM, Gottschalke WA, Liebovitch LS, Selector LY, Todorov AT, Yeandle S (1995) Membrane potential fluctuations of human T-lymphocytes have fractal characteristics of fractional Brownian motion. Ann Biomed Eng 24:99–108

    Article  Google Scholar 

  • Clarkson MW, Lee AL (2004) Long-range dynamic effects of point mutations propagate through side chains in the serine protease inhibitor eglin c. Biochemistry 43:12448–12458

    Article  PubMed  CAS  Google Scholar 

  • Colvin JT, Stapleton HJ (1985) Fractal and spectral dimensions of biopolymer chains: solvent studies of electron spin relaxation rates in myoglobin azide. J Chem Phys 82:10

    Article  Google Scholar 

  • Coveney PV, Fowler PW (2005) Modelling biological complexity: a physical scientist’s perspective. J R Soc Interf 2:267–280

    Article  CAS  Google Scholar 

  • Creighton TE (1993) Proteins: structures and molecular principles. W. H. Freeman and Co., New York

    Google Scholar 

  • Cserzo AM, Vicsek T (1991) Self-affine fractal analysis of protein structures. Chaos Solitons Fractals 1:431–438

    Article  CAS  Google Scholar 

  • Cui Q (2006) Normal mode analysis: theory and applications to biological and chemical systems. Chapman and Hall/CRC, FL

    Google Scholar 

  • d’Auriac JCA, Rammal R (1984) ‘True’ self-avoiding walk on fractals. Phys A Math Gen 17:L15–L20

    Article  Google Scholar 

  • Damaschun G, Damaschun H, Gast K, Zirwer D (1999) Proteins can adopt totally different folded conformations. J Mol Biol 291:715–725

    Article  PubMed  CAS  Google Scholar 

  • Dawson KA, Timoshenko EG, Kuznetsov YA (1997) Kinetics of conformational transitions of a single polymer chain. Physica A 236(1–2): 58–74

    Google Scholar 

  • de Gennes PG (1979) Scaling Concepts in Polymer Physics (Ithaca. Cornell University Press), NY

    Google Scholar 

  • de Gennes PG (1985) Kinetics of collapse for a flexible coil. J Phys (Paris) Lett 46: L-639–L-642

    Google Scholar 

  • De Leeuw M, Reuveni S, Klafter J, Granek R (2009) Coexistence of flexibility and stability of proteins: an equation of state. PLoS ONE 4(10):e7296

    Article  PubMed  CAS  Google Scholar 

  • Delarue M, Sanejouand YH (2002) Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model. J Mol Biol 320:1011–1024

    Article  PubMed  CAS  Google Scholar 

  • Dewey TG (1993) Protein structure and polymer collapse. J Chem Phys 98:2250–2257

    Article  CAS  Google Scholar 

  • Dewey TG (1995) Fractal dimensions of proteins: what are we learning? Het Chem Rev 2:91–101

    CAS  Google Scholar 

  • Dewey TG (1997) Fractals in molecular biophysics. Oxford University Press, New York

    Google Scholar 

  • Dewey TG, Bann JG (1992) Protein dynamics and noise. Biophys J 63:594–598

    Article  PubMed  CAS  Google Scholar 

  • Dewey TG, Spencer DB (1991) Are protein dynamics fractal? Commun Mol Cell Biophys 7:155–171

    Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    Article  PubMed  CAS  Google Scholar 

  • Dill KA (1999) Polymer principles and protein folding. Protein Sci 8: 1166–1180

    Google Scholar 

  • Dill KA, Fiebig KM, Chan HS (1993) Cooperativity in protein-folding kinetics. Proc Natl Acad Sci USA 90:1942–1946

    Article  PubMed  CAS  Google Scholar 

  • Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, Thomas PD, Chan HS (1995) Principles of protein folding–a perspective from simple exact models. Protein Sci 4(4):561–602

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (1992) Unfolded proteins, compact states and molten globules. Curr Opin Struct Biol 2:6–12

    Article  Google Scholar 

  • Doi M, Edwards SF (1988) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  • Domb C (1969) Self-avoiding walks on lattices. Adv Chem Phys 15:229–259

    Article  Google Scholar 

  • Doruker P, Atilgan AR, Bahar I (2000) Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to a-amylase inhibitor. Proteins 40:512–524

    Article  PubMed  CAS  Google Scholar 

  • Drews AR, Thayer BD, Stapleton HJ, Wagner GC, Giugliarelli G, Cannistraro S (1990) Electron spin relaxation measurements on the blue-copper protein plastocyanin: deviations from a power law temperature dependence. Biophys J 57(1):157–162

    Google Scholar 

  • Dryden DTF, Thomson AR, White JH (2008) How much of protein sequence space has been explored by life on Earth? J R Soc Interface 5:953–995

    Article  PubMed  CAS  Google Scholar 

  • Duplantier B, Saleur H (1987) Exact tricritical exponents for polymers at the theta point in two dimensions. Phys Rev Lett 59:539–542

    Article  PubMed  CAS  Google Scholar 

  • Dyson HJ, Rance M, Houghten RA, Wright PE, Lerner RA (1988) Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J Mol Biol 201:201–217

    Article  PubMed  CAS  Google Scholar 

  • Eaton WA, Muñoz V, Thompson PA, Henry ER, Hofrichter J (1998) Kinetics and dynamics of loops, α-helices, β-hairpins and fast-folding proteins. Accounts Chem Res 31:745–753

    Article  CAS  Google Scholar 

  • Eichinger BE (1972) Elasticity theory. I. Distribution functions for perfect phantom networks. Macromolecules 5:496–505

    Article  CAS  Google Scholar 

  • Eisenriegler E (1993) Polymers near surfaces: conformation properties and relation to critical phenomena. World Scientific, Singapore

    Google Scholar 

  • Elber R (1989) Fractal analysis of protein. In: Avnir D (ed) The fractal approach to heterogeneous chemistry. Wiley, New York

    Google Scholar 

  • Elber R, Karplus M (1986) Low-frequency modes in proteins: use of the effective-medium approximation to interpret the fractal dimension observed in electron-spin relaxation measurements. Phys Rev Lett 56:394

    Article  PubMed  CAS  Google Scholar 

  • Elber R, Karplus M (1987) Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science 235:318

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Hartl FU (1999) Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9:102–110

    Article  PubMed  CAS  Google Scholar 

  • Enright MB, Leitner DM (2005) Mass fractal dimension and the compactness of proteins. Phys Rev E 71:011912

    Article  CAS  Google Scholar 

  • Epand RM, Scheraga HA (1968) The influence of long-range interactions on the structure of myoglobin. Biochemistry 7:2864–2872

    Article  PubMed  CAS  Google Scholar 

  • Evitt M, Sanders C, Stern PS (1985) Protein normal-mode dynamics; trypsin inhibitor, crambin, ribonuclease, and lysozyme. J Mol Biol 181: 423–447

    Google Scholar 

  • Family F (1982) Direct renormalization group study of loops in polymer. Phys Lett 92A:341–344

    CAS  Google Scholar 

  • Fan ZZ, Hwang JK, Warshel A (1999) Using simplified protein representation as a reference potential for all-atom calculations of folding free energy. Theor Chem Acc 103:77–80

    Article  CAS  Google Scholar 

  • Feig M, Onufriev A, Lee M, Im W, Case E, Brooks C (2004) Performance comparison of generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J Comput Chem 25:265–284

    Article  PubMed  CAS  Google Scholar 

  • Fermi E, Pasta J, Ulam S (1955) Studies of nonlinear problems. Los Alamos Rep LA-1940, Pap 266: 491–501

    Google Scholar 

  • Fersht AR (2000) Transition-state structure as a unifying basis in protein-folding mechanismscontact order, chain topology, stability, and the extended nucleus mechanism Proc. Natl Acad Sci USA 97:1525–1529

    Article  CAS  Google Scholar 

  • Figueiredo PH, Moret MA, Nogueira E Jr, Coutinho S (2008) Dihedral-angle Gaussian distribution driving protein folding. Phys A 387:2019–2024

    Article  CAS  Google Scholar 

  • Finkelstein AV (1991) Rate of β-structure formation in polypeptides. Proteins 9:23–27

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein AV, Ptitsyn OB (2002) Protein Physics. Academic Press, San Diego

    Google Scholar 

  • Flory P (1971) Principles of Polymer Chemistry (Ithaca. Cornell University Press), New York

    Google Scholar 

  • Frauenfelder H, McMahon B (1998) Dynamics and functions of proteins: the search of general concepts. Proc Natl Acad Sci USA 95:4795–4797

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature dependent X-ray diffraction as a probe as of protein structural dynamics. Nature 280:558–563

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, Parak F, Young RD (1988) Conformational substates in proteins. Ann Rev Biophys Biophys Chem 17: 451–479

    Google Scholar 

  • Freed KF (1987) Renormalization group theory of macromolecules. Wiley, New York

    Google Scholar 

  • French AS, Stockbridge LL (1988) Fractal and Markov behavior in ion channel kinetics. Can J Physiol Pharm 66:967–970

    Article  CAS  Google Scholar 

  • Fuentes EJ, Gilmore SA, Mauldin RV, Lee AL (2006) Evaluation of energetic and dynamics coupling networks in a PDZ domain protein. J Mol Biol 364:337–351

    Article  PubMed  CAS  Google Scholar 

  • Fujisaki H, Straub JE (2005) Vibrational energy relaxation in proteins. Proc Natl Acad Sci USA 102:7626–7631

    Article  CAS  Google Scholar 

  • Fukada K, Maeda H (1990) Correlation between rate or chain folding and stability of the β-structure of a polypeptide. J Phys Chem 94:3843–3847

    Article  CAS  Google Scholar 

  • Gallivan JP, Dougherty DA (1999) Cation–π interactions in structural biology. Proc Natl Acad Sci USA 96:9459–9464

    Article  PubMed  CAS  Google Scholar 

  • Garcia AE, Blumenfeld R, Hummer G, Krumhansl JA (1997) Multi-basin dynamics of a protein in a crystal environment. Physica D 107:225–239

    Article  CAS  Google Scholar 

  • Gilmanshin R, Williams S, Callender RH, Woodruff WH, Dyer RB (1997) Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc Natl Acad Sci USA 94:3709–3713

    Article  PubMed  CAS  Google Scholar 

  • Glockle WG, Nonnenmacher TF (1995) A fractional calculus approach to self-similar protein dynamics. Biophys J 68:46–53

    Article  PubMed  CAS  Google Scholar 

  • Goetze T, Brickmann J (1992) Self similarity of protein surfaces. Biophys J 61:109–118

    Google Scholar 

  • Go N, Taketomi H (1978) Respective roles of short- and long-range interactions in protein folding. Proc Natl Acad Sci USA 75: 559–563

    Google Scholar 

  • Go N, Abe H, Mizuno H, Taketomi H (1980) Local structures in the process of protein folding. In: Jaenicke N (ed) Protein folding. Elsevier, Amsterdam, pp 167–181

    Google Scholar 

  • Goldenfeld N (1992) Lectures on phase transitions and the renormalization group. Addison-Wesley, Reading

    Google Scholar 

  • Goldstein RA, Luthey-Schulten ZA, Wolynes PG (1992a) Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc Natl Acad Sci USA 89:9029–9033

    Article  PubMed  CAS  Google Scholar 

  • Goldstein RA, Luthey-Schulten ZA, Wolynes PG (1992b) Optimal protein-folding codes from spin-glass theory. Proc Natl Acad Sci USA 89:4918–4922

    Article  PubMed  CAS  Google Scholar 

  • Goychuk I, Hanggi P (2002) Ion channel gating: a first-passage time analysis of the Kramers type. Proc Natl Acad Sci USA 99:3552–3556

    Article  PubMed  CAS  Google Scholar 

  • Granek R, Klafter J (2005) Fractons in proteins: Can they lead to anomalously decaying time autocorrelations? Phys Rev Lett 95:098106

    Article  PubMed  CAS  Google Scholar 

  • Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Phys D 9:183–208

    Article  Google Scholar 

  • Grimaa R, Schnell S (2006) A systematic investigation of the rate laws valid in intracellular environments. Biophys Chem 124:1–10

    Article  CAS  Google Scholar 

  • Gromiha MM, Selvaraj S (2001) Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction. J Mol Biol 310(1):27–32

    Article  PubMed  CAS  Google Scholar 

  • Grosberg AYu, Khokhlov AR (1994) Statistical physics of macromolecules. AIP Press, New York

    Google Scholar 

  • Grosberg AIu, Shakhnovich EI (1986) (Russian paper) A theory of heteropolymers with frozen random primary structure: properties of the globular state, coil-globule transitions and possible biophysical applications. Biofizika 31(6):1045–1057

    Google Scholar 

  • Grosberg AY, Nechaev S, Tamm M, Vasilyev O (2006) How long does it take to pull an ideal polymer into a small hole? Phys Rev Lett 96(22):228105

    Article  PubMed  CAS  Google Scholar 

  • Guerois R, Serrano L (2001) Protein design based on folding models. Curr Opin Struct Biol 11:101–106

    Article  PubMed  CAS  Google Scholar 

  • Gutin A, Abkevich V, Shakhnovich E (1995) Is burst hydrophobic collapse necessary for protein folding? Biochemistry 34:3066

    Article  PubMed  CAS  Google Scholar 

  • Gutin AM, Abkevich VI, Shakhnovich EI (1996) Chain length scaling of protein folding time. Phys Rev Lett 77:5433–5436

    Article  PubMed  CAS  Google Scholar 

  • Hagen S, Eaton W (2000) Two-state expansion and collapse of a polypeptide. J Mol Biol 301:1037

    Article  CAS  Google Scholar 

  • Haliloglu T, Bahar I, Erman B (1997) Gaussian dynamics of folded proteins. Phys Rev Lett 79:3090–3093

    Article  CAS  Google Scholar 

  • Halperin A, Goldbart PM (2000) Early stages of homopolymer collapse. Phys Rev E 61:565–573

    Article  CAS  Google Scholar 

  • Havlin S, Ben-Avraham D (1982a) Fractal dimensionality of polymer chains. J Phys A 15:L311–L316

    Article  CAS  Google Scholar 

  • Havlin S, Ben-Avraham D (1982b) New approach to self-avoiding walks as a critical phenomenon. J Phys A 15:L321–L328

    Article  CAS  Google Scholar 

  • Havlin S, Ben-Avraham D (1982c) Theoretical and numerical study of fractal dimensionality in self-avoiding walks. Phys Rev A 26:1728–1734

    Article  CAS  Google Scholar 

  • Havlin S, Ben-Avraham D (1982d) New method of analysing self-avoiding walks in four dimensions. J Phys A 15:L317–L320

    Article  Google Scholar 

  • Hayes B (1998) How to avoid yourself. Am Sci 86:314–319

    Google Scholar 

  • Heath AP, Kavraki LE, Clementi C (2007) From coarse-grain to all-atom: toward multiscale analysis of protein landscapes. Proteins 68:646–661

    Article  PubMed  CAS  Google Scholar 

  • Helman JS, Coniglio A, Tsallis C (1984) Fractons and the fractal structure of proteins. Phys Rev Lett 53:1195–1197

    Article  CAS  Google Scholar 

  • Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M et al (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450(7171):913–916

    Article  PubMed  CAS  Google Scholar 

  • Herrmann HJ (1986) Comment on fractons and the fractal structure of proteins. Phys Rev Lett 56:2432

    Article  PubMed  CAS  Google Scholar 

  • Hinsen K (1999) Analysis of domain motion by approximate normal mode calculations. Proteins Struct Funct Genetics 33:417–429

    Google Scholar 

  • Hong L, Jinzhi L (2009) Scaling law for the radius of gyration of proteins and its dependence on hydrophobicity. J Polym Sci Part B 47:207–214

    Article  CAS  Google Scholar 

  • Ichiye T, Karplus M (1987) Anisotropy and anharmonicity of atomic fluctuations in proteins: analysis of a molecular dynamics simulations. Proteins 2:236–239

    Article  PubMed  CAS  Google Scholar 

  • Isogai Y, Itoh T (1984) Fractal analysis of tertiary structure of protein molecule. J Phys Soc Japan 53:2162

    Article  CAS  Google Scholar 

  • Isvoran A (2004) Describing some properties of adenylate kinase using fractal concepts. Chaos Solitons Fractals 19:141–145

    Article  CAS  Google Scholar 

  • Jackson SE (1998) How do small single-domain proteins fold? Folding and Design 3:R81–R91

    Google Scholar 

  • Jacobs DJ, Rader AJ, Kunh LA, Thorpe MF (2001) Protein flexibility prediction using graph theory. Proteins Struct Funct Genet 44: 150–165

    Google Scholar 

  • Karplus M (2000) Aspects of protein reaction dynamics: deviations from simple behavior. J Phys Chem B 104:11–27

    Article  CAS  Google Scholar 

  • Karplus M, McCammon J (1983) Dynamics of proteins: elements and functions. Ann Rev Biochem 53:263–300

    Article  Google Scholar 

  • Karplus M, Shakhnovich E (1992) Protein folding: theoretical studies. In: Creighton T (ed) Protein folding. W. H. Freeman, New York, pp 127–195

    Google Scholar 

  • Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    Article  PubMed  CAS  Google Scholar 

  • Kesten H (1963) On the number of self-avoiding walks. J Math Phys 4:960–969

    Article  Google Scholar 

  • Kim PS, Baldwin RL (1982) Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem 51:459–489

    Article  PubMed  CAS  Google Scholar 

  • Kim PS, Baldwin RL (1990) Intermediates in the folding reactions of small proteins. Annu Rev Biochem 59:631–660

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Jeong J, Kim YKY, Jung SH, Lee KJ (2005) Fractal stochastic modeling of spiking activity in suprachiasmatic nucleus neurons. J Comp Neurosci 19:39–51

    Article  Google Scholar 

  • Kitao A, Hayward S, Go N (1998) Energy landscape of a native protein: jumping-among-minima model. Proteins 33:496

    Article  PubMed  CAS  Google Scholar 

  • Kittel C (2004) Introduction to solid state physics. New York, Wiley

    Google Scholar 

  • Kitsak M, Havlin S, Paul G, Riccaboni M, Pammolli F, Stanley HE (2007) Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks. Phys Rev E 75:056115

    Article  CAS  Google Scholar 

  • Klimov DK, Thirumalai D (1996) Criterion that determines the foldability of proteins. Phys Rev Lett 76(21):4070–4073

    Article  PubMed  CAS  Google Scholar 

  • Kloczkowski A, Mark JE (1989) Chain dimensions and fluctuations in random elastomeric networks. I. Phantom Gaussian networks in the undeformed state. Macromolecules 22:1423–1432

    Article  CAS  Google Scholar 

  • Klushin LI (1998) Kinetics of a homopolymer collapse: beyond the Rouse-Zimm scaling. J Chem Phys 108(18):7917–7920

    Article  CAS  Google Scholar 

  • Kolb VA, Makeev EV, Spirin AS (1994) Folding of firefly luciferase during translation in a cell-free system. EMBO J 13:3631–3637

    PubMed  CAS  Google Scholar 

  • Kolinski A, Galazka W, Skolnick J (1996) On the origin of the cooperativity of protein folding: implications from model simulations. Proteins 26(3):271–287

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov D, Van Wynsberghe A, Bannen R, Cui Q, Phillips G (2007) Protein structural variation in computational models and crystallographic data. Structure 15:169–177

    Article  PubMed  CAS  Google Scholar 

  • Kopelman R (1986) Rate processes on fractals: theory, simulations, and experiments. J Stat Phys 42:185–200

    Article  Google Scholar 

  • Kopelman R (1988) Fractal reaction kinetics. Science 241:1620–1626

    Article  PubMed  CAS  Google Scholar 

  • Korn SJ, Horn R (1988) Statistical discrimination of fractal and Markov models of single channel gating. Biophys J 54:871–877

    Article  PubMed  CAS  Google Scholar 

  • Kosmidis K, Argyrakis P, Macheras P (2003) Fractal kinetics in drug release from finite fractal matrices. J Chem Phys 119:63–73

    Article  CAS  Google Scholar 

  • Krebs WG, Alexandrov V, Wilson CA, Echols N, Yu H, Gerstein M (2002) Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. Proteins 48:682–695

    Article  PubMed  CAS  Google Scholar 

  • Kuriyan J, Petsko GA, Levy RM, Karplus M (1986) Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics. J Mol Biol 190:227–254

    Article  PubMed  CAS  Google Scholar 

  • Lauger P (1988) Internal motions in proteins and gating kinetics of ion channels. Biophys J 53:877–884

    Article  PubMed  CAS  Google Scholar 

  • Lee CY (2006) Mass fractal dimension of the ribosome and implication of its dynamic characteristics. Phys Rev E 73:042901

    Article  CAS  Google Scholar 

  • Lee CY (2008) Self-similarity of biopolymer backbones in the ribosome. Phys A 387:4871–4880

    Article  CAS  Google Scholar 

  • Lehmann KK, Pate BH, Scoles G (1994) Intramolecular dynamics from eigenstate-resolved intrared spectra. Annu Rev Phys Chem 45:241–274

    Article  CAS  Google Scholar 

  • Leitner DM (2001) Vibrational energy transfer in helices. Phys Rev Lett 87:188102

    Article  CAS  Google Scholar 

  • Leitner DM (2002) Anharmonic decay of vibrational states in helical peptides, coils and one-dimensional glasses. J Phys Chem A 106:10870–10876

    Article  CAS  Google Scholar 

  • Leitner DM (2008) Energy flow in proteins. Annu Rev Phys Chem 59:233–259

    Article  PubMed  CAS  Google Scholar 

  • Leitner DM, Wolynes PG (1996) Vibrational relaxation and energy localization in polyatomics: effects of high-order resonances on flow rates and the quantum ergodicity transition. J Chem Phys 105:11226–11236

    Article  CAS  Google Scholar 

  • Lewis M, Rees DC (1985) Fractal surfaces of proteins. Science 230:1163–1165

    Article  PubMed  CAS  Google Scholar 

  • Li HQ, Chen SH, Zhao HM (1990a) Fractal structure and conformational entropy of protein chain. Int J Biol Macromol 12:374–378

    Article  PubMed  CAS  Google Scholar 

  • Li HQ, Chen SH, Zhao HM (1990b) Fractal mechanisms for the allosteric effects of proteins and enzyme. Biophys J 58:1313–1320

    Article  PubMed  CAS  Google Scholar 

  • Li MS, Klimov DK, Thirumalai D (2004) Finite size effects on thermal denaturation of globular proteins. Phys Rev Lett 93:268107

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Dill KA (2001) Are proteins well-packed? Biophys J 81:751–766

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch LS, Sullivan JM (1987) Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys J 52:979–988

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch LS, Toth TI (1990) Using fractals to understand the opening and closing of ion channels. Ann Biomed Eng 18:177–194

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch LS, Toth TI (1991) A model of ion channel kinetics using deterministic chaotic rather than stochastic processes. J Theor Biol 148:243–267

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch LS, Fischbary J, Koniarek JP, Todorova I, Wang M (1987a) Fractal model of ion-channel kinetics. Biochim Biophys Acta 869:173–180

    Google Scholar 

  • Liebovitch LS, Fischbary J, Koniarek J (1987b) Ion channel kinetics: a model based on fractal scaling rather than multistate markov processes. Math Biosci 84:37–68

    Article  Google Scholar 

  • Lifshitz IM, Grosberg AY, Khokhlov AR (1978) Diagram of States of the Isotropic Solution of Semiflexible. Macromolecules near the Theta-Point. Rev Mod Phys 50:683

    Article  CAS  Google Scholar 

  • Lockless SW, Ranganathan R (1999) Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286:295–299

    Article  PubMed  CAS  Google Scholar 

  • Logan DE, Wolynes PG (1990) Quantum localization and energy flow in many-dimensional Fermi resonant systems. J Chem Phys 93:4994–5012

    Article  CAS  Google Scholar 

  • Lois G, Blawzdziewicz J, O’Hern CS (2010) Protein folding on rugged energy landscapes: conformational diffusion on fractal networks. Phys Rev E 81:051907

    Article  CAS  Google Scholar 

  • Lowen SB, Teich MC (1993) Fractal renewal processes. IEEE Trans Info Theory 39:1669–1671

    Article  Google Scholar 

  • Lowen SB, Liebovitch LS, White JA (1999) Fractal ion-channel behavior generates fractal firing patterns in neuronal models. Phys Rev E 59:5970–5980

    Article  CAS  Google Scholar 

  • Lu M, Ma J (2005) The role of shape in determining molecular motions. Biophys J 89:2395–2401

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Zhang D, McCammon J (2005) Computation of electrostatic forces between solvated molecules determined by the Poisson–Boltzmann equation using a boundary element method. J Chem Phys 122:214102–214108

    Article  PubMed  CAS  Google Scholar 

  • Lushnikov SG, Svanidze AV, Sashin IL (2005) Vibrational density of states of hen egg white lysozyme. JETP Letters 82:30–33

    Google Scholar 

  • Madras N, Whittington SG (2002) Self-averaging in finite random copolymers. J Phys A Math Gen 35:L427–L431

    Article  CAS  Google Scholar 

  • McKenzie DS (1976) Polymers and scaling. Phys Rep (Sect C of Phys Lett) 27(2):35–88

    Article  Google Scholar 

  • Micheletti C, Lattanzi G, Maritan A (2002) Elastic properties of proteins: insight on the folding processes and evolutionary selection of native structures. J Mol Biol 321:909–921

    Article  PubMed  CAS  Google Scholar 

  • Millhauser G, Salpeter L, Oswald RE (1988) Diffusion models of ion-channel gating and the origin of the power-law distributions from single-channel recording. Proc Natl Acad Sci USA 85:1503–1507

    Article  PubMed  CAS  Google Scholar 

  • Mirny L, Shakhnovich E (2001) Protein folding theory: from lattice to all-atom models. Annu Rev Biophys Biomol Struct 30:361–396

    Article  PubMed  CAS  Google Scholar 

  • Mitra C, Rani M (1993) Protein sequences as random fractals. J Biosci 18:213–220

    Article  CAS  Google Scholar 

  • Miyazawa S, Jernigan RL (1999) An empirical energy potential with a reference state for protein fold and sequence recognition. Proteins Struct Funct Genet 36:357–369

    Article  PubMed  CAS  Google Scholar 

  • Moret MA, Santana MC, Zebende GF, Pascutti PG (2009) Self-similarity and protein compactness. Phys Rev E 80:041908

    Article  CAS  Google Scholar 

  • Morita H, Takano M (2009) Residue network in protein native structure belongs to the universality class of three dimensional critical percolation cluster. Phys Rev E 79:020901

    Article  CAS  Google Scholar 

  • Moritsugu K, Miyashita O, Kidera A (2000) Vibrational energy transfer in a protein molecule. Phys Rev Lett 85:3970–3973

    Article  PubMed  CAS  Google Scholar 

  • Moritsugu K, Miyashita O, Kidera A (2003) Temperature dependence of vibrational energy transfer in a protein molecule. J Phys Chem B 107:3309–3317

    Article  CAS  Google Scholar 

  • Munoz V, Eaton WA (1999) A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc Natl Acad Sci USA 96:11311–11316

    Google Scholar 

  • Munoz V, Thompson PA, Hofrichter J, Eaton WA (1997) Folding dynamics and mechanism of beta-hairpin formation. Nature 390:196–199

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  • Naidenov A, Nechaev S (2001) Adsorption of a random heteropolymer at a potential well revisited: location of transition point and design of sequencesJ. Phys A Math Gen 34:5625

    Article  CAS  Google Scholar 

  • Nakayama T, Yakubo K, Orbach RL (1994) Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations. Rev Mod Phys 66:381–443

    Article  CAS  Google Scholar 

  • Neri M, Anselmi C, Cascella M, Maritan A, Carloni P (2005) Coarse-grained model of proteins incorporating atomistic detail of the active site. Phys Rev Lett 95(21):218102

    Google Scholar 

  • Nicolay S, Sanejouand YH (2006) Functional modes of proteins are among the most robust Phys. Rev Lett 96:078104

    Article  CAS  Google Scholar 

  • Nölting B, Andret K (2000) Mechanism of protein folding. Proteins 41:288–298

    Article  PubMed  Google Scholar 

  • Nolting B et al (1997) The folding pathway of a protein at high Resolution from Microseconds to Seconds. Proc Natl Acad Sci USA 94:826

    Article  PubMed  CAS  Google Scholar 

  • Nonnenmacher TF (1989) Fractal scaling mechanisms in biomembranes. Eur Biophys J 16:375–379

    Article  PubMed  CAS  Google Scholar 

  • Novikov VU, Kozlov GV (2000) Structure and properties of polymers in terms of the fractal approach. Russ Chem Rev 69:523–549

    Article  CAS  Google Scholar 

  • Ostrovsky B, Bar-Yam Y (1994) Irreversible polymer collapse in 2 and 3 dimensions. Europhys Lett 25:409–414

    Article  CAS  Google Scholar 

  • Pande VS, Grosberg AY, Tanaka T (1995a) Freezing transition of random heteropolymers consisting of an arbitrary set of monomers. Phys Rev E 51: 3381–3402

    Google Scholar 

  • Pande VS, Grosberg AY, Tanaka T (1995b) How accurate must potentials be for successful modeling of protein folding? J Chem Phys 103: 9482–9491

    Google Scholar 

  • Pande VS, Grosberg AYu, Tanaka T (1997) Thermodynamics of the coil to frozen globule transition in heteropolymers. J Chem Phys 107:5118

    Article  CAS  Google Scholar 

  • Pande VS, Grosberg AYu, Tanaka T (1998) Heteropolymer freezing and design: towards physical models of protein folding. Rev Mod Phys 72:72–259

    Google Scholar 

  • Peierls RE (1934) Bemerkungu ¨ber Umwandlungstemperaturen. Helv Phys Acta 7:S81–S83

    Google Scholar 

  • Petrey D, Honig B (2000) Free energy determinants of tertiary structure and the evaluation of protein models. Protein Sci 9:2181–2191

    Article  PubMed  CAS  Google Scholar 

  • Pierri CL, Grassi AD, Turi A (2008) Lattices for ab initio protein structure prediction. Protein Struct Funct Bioinf 73:351–361

    Article  CAS  Google Scholar 

  • Plaxco KW, Simons KT, Baker D (1998) Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 277(4):985–994

    Google Scholar 

  • Poland D, Scheraga HA (1970) Theory of helix-coil transitions in biopolymers. Academic Press, New York

    Google Scholar 

  • Praprotnik M, Delle Site L, Kremer K (2005) Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. J Chem Phys 123: 224106

    Google Scholar 

  • Privalov PL (1979) Stability of proteins: small globular proteins. Adv Phys Chem 33: 167–244

    Google Scholar 

  • Ptitsyn OB (1987) Protein folding: hypotheses and experiments. J Protein Chem 6:273–293

    Article  CAS  Google Scholar 

  • Ptitsyn OB, Rashin AA (1975) A model of myoglobin self-organization. Biophys Chem 3:1–20

    Article  PubMed  CAS  Google Scholar 

  • Qi PX, Sosnick TR, Englander SW (1998) The burst phase in ribonuclease a folding and solvent dependence of the unfolded state. Nat Struct Biol 5:882

    Article  PubMed  CAS  Google Scholar 

  • Qiu L, Zachariah C, Hagen SJ (2003) Fast chain contraction during protein folding: “foldability” and collapse. Dynamics 90(16):1681031–1681034

    Google Scholar 

  • Ramakrishnan A, Sadana A (1999) Analysis of analyte-receptor binding kinetics for biosensor applications: an overview of the influence of the fractal dimension on the surface on the binding rate coefficient. Biotechnol Appl Biochem (Pt-1):45–57

    Google Scholar 

  • Rammal R, Toulouse G (1983) Random walks on fractal structures and percolation clusters. J Phys Lett 44:L13–L22

    Article  Google Scholar 

  • Ramnarayan K, Bohr H, Jalkanen K (2008) Classification of protein fold classes by knot theory and prediction of folds by neural networks: a combined theoretical and experimental approach. Theor Chim Acta 119:265–274

    Article  CAS  Google Scholar 

  • Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Crystalline ribonuclease a loses function below the dynamical transition at 220 K. Nature 357:423–424

    Article  PubMed  CAS  Google Scholar 

  • Reuveni S (2008) Proteins: unraveling universality in a realm of specificity. PhD thesis. Tel Aviv University, Tel Aviv

    Google Scholar 

  • Reuveni S, Granek R, Klafter J (2008) Proteins: coexistence of stability and Flexibility. Phys Rev Lett 100:208101

    Article  PubMed  CAS  Google Scholar 

  • Reuveni S, Granek R, Klafter J (2010) Anomalies in the vibrational dynamics of proteins are a consequence of fractal-like structure. Proc Natl Acad Sci USA 107:13696–13700

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Pereda E, Gonzalez J, Abdala P, Obeso JA (2003) Neuronal activity in the substantia nigra in the anaesthetized rat has fractal characteristics. Evidence for firing-code patterns in the basal ganglia. Exp Brain Res 151:167–172

    Article  PubMed  CAS  Google Scholar 

  • Røgen P, Fain B (2003) Automatic classification of protein structure by using Gauss integrals. Proc Natl Acad Sci USA 100:119–124

    Article  PubMed  CAS  Google Scholar 

  • Rozenfeld HD, Song C, Makse HA (2010) The small world-fractal transition in complex networks through renormalization group. Phys Rev Lett 104:025701

    Article  PubMed  CAS  Google Scholar 

  • Sangha AK, Keyes T (2009) Proteins fold by subdiffusion of the order parameter. J Phys Chem B 113:15886–15894

    Article  PubMed  CAS  Google Scholar 

  • Sauder JM, Roder H (1998) Amide protection in an early folding intermediate of cytochrome c. Fold Des 3:293–301

    Article  PubMed  CAS  Google Scholar 

  • Schellman JA (1955) Stability of hydrogen bonded peptide structures in aqueous solution. Compt Rend Lab Carlsberg Ser Chim 29:230–259

    CAS  Google Scholar 

  • Selvaraj S, Gromiha MM (2003) Role of hydrophobic clusters and long-range contact networks in the folding of (alpha/beta) 8 barrel proteins. Biophys J 84:1919–1925

    Article  PubMed  CAS  Google Scholar 

  • Sfatos CD, Gutin AM, Shakhnovich EI (1993) Phase diagram of random copolymers. Phys Rev E 48:465–475

    Article  CAS  Google Scholar 

  • Shakhnovich E (2006) Protein folding thermodynamics and dynamics: where physics, chemistry and biology meet. Chem Rev 106(5):1559–1588

    Article  PubMed  CAS  Google Scholar 

  • Shakhnovich EI, Gutin AM (1991) Influence of point mutations on protein structure: probability of a neutral mutation. J Theor Biol 149:537–546

    Article  PubMed  CAS  Google Scholar 

  • Sharp K, Skinner JJ (2006) Pump-probe molecular dynamics as a tool for studying protein motion and long range coupling. Proteins 65:347–361

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048

    Article  PubMed  CAS  Google Scholar 

  • Shlesinger MF (1988) Fractal time in condensed matter. Annu Rev Phys Chem 39:269–290

    Article  CAS  Google Scholar 

  • Shoemaker R et al (1985) Nature of the charged-group effect on the stability of the C-peptide helix. Proc Natl Acad Sci USA 82:2349–2353

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker K, Kim P, York E, Stewart J, Baldwin R (1987) Tests of the helix dipole model for stabilization of alpha-helices. Nature 326:563–567

    Article  PubMed  CAS  Google Scholar 

  • Shortle D (1996) The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J 10:27–34

    PubMed  CAS  Google Scholar 

  • Song C, Havlin S, Makse HA (2006) Origins of fractality in the growth of complex networks. Nat Phys 2:275–281

    Article  CAS  Google Scholar 

  • Sosnick TR, Shtilerman MD, Mayne L, Englander SW (1997) Ultrafast signals in protein folding and the polypeptide contracted state. Proc Natl Acad Sci USA 94:8545

    Article  PubMed  CAS  Google Scholar 

  • Spassov V, Ladenstein R, Karshikoff AD (1997) A optimization of the electrostatic interactions between ionized groups and peptide dipoles in proteins. Protein Sci 6:1190–1196

    Article  PubMed  CAS  Google Scholar 

  • Stanley H (1999) Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Rev Mod Phys 71(2): S358–S366

    Google Scholar 

  • Stapleton HJ (1985) Comment on fractons and the fractal structure of proteins. Phys Rev Lett 54:1734

    Article  PubMed  CAS  Google Scholar 

  • Stapleton HJ, Allen JP, Flynn CP, Stinson DG, Kurtz SR (1980) Fractal form of proteins. Phys Rev Lett 45:1456–1459

    Article  CAS  Google Scholar 

  • Steinbach PJ, Ansari A, Berendzen J, Braunstein D, Chu K, Cowen BR, Ehrenstein D, Frauenfelder H, Johnson JB, Lamb DC (1991) Ligand binding to heme proteins: connection between dynamics and function. Biochemistry 30:3988–4001

    Article  PubMed  CAS  Google Scholar 

  • Stepanow S, Chudnovskiy AL (2002) The Green’s function approach to adsorption of a random heteropolymer onto surfaces. J Phys A: Math Gen 35:4229

    Article  CAS  Google Scholar 

  • Suel GM, Lockless SW, Wall MA, Ranganathan R (2003) Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Biol 10:59–69

    Article  PubMed  CAS  Google Scholar 

  • Takens F (1985) On the numerical determination of the dimension of an attractor. In: Braaksma B, Broer H, Takens F (eds) Lecture notes in mathematics, vol 1125. Springer, Berlin, pp 99–106

    Google Scholar 

  • Tama F, Brooks C (2006) Symmetry, form, and shape: guiding principles for robustness in macromolecular machines Annu. Rev Biophys Biomol Struct 35:115–133

    Article  CAS  Google Scholar 

  • Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng Des Sel 14:1–6

    Article  CAS  Google Scholar 

  • Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  • Tanford C (1962) Contribution of hydrophobic interactions to the stability of globular confirmation of proteins. J Am Chem Soc 84:4240

    Article  CAS  Google Scholar 

  • Taverna DM, Goldstein RA (2002) Why are proteins marginally stable? Proteins 46(1):105–109

    Article  PubMed  CAS  Google Scholar 

  • Tejera E, Machadoa A, Rebelo I, Nieto-Villar J (2009) Fractal protein structure revisited: topological kinetic and thermodynamic relationships. Phys A 388:4600–4608

    Article  CAS  Google Scholar 

  • Thirumalai D (1995) From minimal models to real proteins, time scales for protein folding kinetics. J Phys I France 5:1457

    Article  CAS  Google Scholar 

  • Thomas PD, Dill KA (1993) Local and nonlocal interactions in globular proteins and mechanisms of alcohol denaturation. Protein Sci 2:2050–2065

    Article  PubMed  CAS  Google Scholar 

  • Tirion MM (1996) Low-amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys Rev Lett 77:1905–1908

    Article  PubMed  CAS  Google Scholar 

  • Tissen J, Fraaije J, Drenth J, Berendsen H (1994) Mesoscopic theories for protein crystal growth. Acta Cryst D 50:569–571

    Article  CAS  Google Scholar 

  • Triebel H (1997) Fractals and spectra, Monographs in Mathematics 91, Birkhôauser

    Google Scholar 

  • Turner TE, Schnell S, Burrage K (2004) Stochastic approaches for modelling in vivo reactions. Comp Biol Chem 28:165–178

    Article  CAS  Google Scholar 

  • Uzer T (1991) Theories of intramolecular vibrational energy transfer. Phys Rep 199:73–146

    Article  CAS  Google Scholar 

  • Wada A (1976) The alpha-helix as an electric macro-dipole. Adv Biophys 9:1–63

    CAS  Google Scholar 

  • Wagner GC, Colvin JT, Allen JP, Stapleton HJ (1985) Fractal models of protein structure, dynamics, and magnetic relaxation. J Am Chem Soc 107:20

    Article  Google Scholar 

  • Wang CX, Shi YY, Huang FH (1990) Fractal study of tertiary structure of proteins. Phys Rev A 41:7043–7048

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Onuchic JN, Wolynes PG (1996) Statistics of kinetic pathways on biased rough energy landscapes with applications to protein folding. Phys Rev Lett 76:4861–4864

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Plotkin SS, Wolynes PG (1997) Configurational diffusion on a locally connected correlated energy landscape: application to finite, random heteropolymers. J Phys I 7:395–421

    Article  CAS  Google Scholar 

  • Warshel A, Papazyan A (1998) Electrostatic effects in macromolecules: fundamental concepts and practical modeling. Curr Opin Struct Biol 8:211–217

    Article  PubMed  CAS  Google Scholar 

  • Weisstein EW (2012) Self-avoiding walk. From mathworld–a wolfram web resource. http://mathworld.wolfram.com/Self-AvoidingWalk.html. Accessed 27 Sept 2012

  • Williams S, Causgrove TP, Gilmanshin R, Fang KS, Callender RH, Woodruff WH, Dyer RB (1996) Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35:691–697

    Article  PubMed  CAS  Google Scholar 

  • Wilson KG (1975) The renormalization group: critical phenomena and the Kondo problem. Rev Mod Phys 47:773

    Article  Google Scholar 

  • Wilson KG (1979) Problems in physics with many scales of length. Sci Am 241:140–157

    Article  Google Scholar 

  • Wolynes PG, Onuchic JN, Thirumalai D (1995) Navigating the folding routes. Science 267:1619–1620

    Article  PubMed  CAS  Google Scholar 

  • Wright PE, Dyson HJ, Lerner RA (1988) Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry 27:7167–7175

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y (1994) Comment on fractal study of tertiary structure of proteins. Phys Rev E 46:6

    Google Scholar 

  • Yang H, Luo G, Karnchanaphanurach P, Louie T-M, Rech I et al (2003) Protein conformational dynamics probed by single-molecule electron transfer. Science 302:262–266

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Leitner DM (2003) Anomalous diffusion of vibrational energy in proteins. J Chem Phys 119:12673–12679

    Article  CAS  Google Scholar 

  • Yuste SB, Acedo L, Lindenberg K (2004) Reaction front in an A + B → C reaction-subdiffusion process. Phys Rev E 69:036126

    Article  CAS  Google Scholar 

  • Zana R (1975) On the rate determining step for helix propagation in the helix-coil transition of polypeptides in solution. Biopolymers 14:2425–2428

    Article  CAS  Google Scholar 

  • Zhou Z, Payne P, Vasquez M, Kuhn N, Levitt M (1996) Finite-difference solution of the Poisson–Boltzmann equation: complete elimination of self-energy. J Comput Chem 17:1344–1351

    Article  CAS  Google Scholar 

  • Zwanzig R (1990) Rate processes with dynamical disorder. Acc Chem Res 23:148–152

    Article  CAS  Google Scholar 

  • Zwanzig R, Szabo A, Bagchi B (1992) Levinthal’s paradox. Proc Natl Acad Sci USA 89:20–22

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Banerji .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Banerji, A. (2013). Studying Protein Interior with Fractal Dimension. In: Fractal Symmetry of Protein Interior. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Basel. https://doi.org/10.1007/978-3-0348-0651-0_2

Download citation

Publish with us

Policies and ethics