Skip to main content

Wiener–Hopf Type Operators and Their Generalized Determinants

  • Conference paper
  • First Online:

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 236))

Abstract

We recall some results on generalized determinants which support a theory of operator τ -functions in the context of their predeterminants which are operators valued in a Banach–Lie group that are derived from the transition maps of certain Banach bundles. Related to this study is a class of Banach–Lie algebras known as L *-algebras from which several results are obtained in relationship to tau functions. We survey the applicability of this theory to that of Schlesinger systems associated with (operator) equations of Fuschsian type and discuss how meromorphic connections may play a role here.

Mathematics Subject Classification (2010). Primary: 47A05, 47B10, 53B10; Secondary: 58B99, 58B25.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ablowitz and P. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Math. Soc. Lecture Notes 149, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  2. B. Aupetit and H. du T. Mouton, Trace and determinant in Banach algebras. Studia Math. 121 (2) (1996), 115–136.

    Google Scholar 

  3. O. Babelon, D. Bernard and M. Talon, Introduction to Classical Integrable Systems. Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  4. J. Ball and V. Vinnikov, Zero-pole interpolation for matrix meromorphic functions on a compact Riemann surface and a matrix Fay trisecant identity, Amer. J. Math. 121 (1999), no. 4, 841–888.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Beltiţă, Smooth Homogeneous Structures in Operator Theory. Monographs and Surveys in Pure and Appl. Math. 137, Chapman and Hall/CRC, Boca Raton Fl. 2006.

    Google Scholar 

  6. D. Beltiţă and J. G alé, Holomorphic geometric models for representations of C∗- algebras. J. Functional Anal. 255 (10) (2008), 2888–2932.

    Google Scholar 

  7. D. Beltiţă and J. G alé, On complex infinite-dimensional Grassmann manifolds. Complex Anal. Oper. Theory 3 (2009), 739–758.

    Google Scholar 

  8. D. Ben-Zvi and I. Biswas, Theta functions and Szegő kernels. Int. Math. Res. Notes 24 (2003), 1305–1340.

    Article  MathSciNet  Google Scholar 

  9. M. Bertola and M. Gekhtman: Biorthogonal Laurent polynomials, Toeplitz determinants, minimal Toda orbits and isomonodromic tau functions. Constr. Approx. 26 (2007), no. 3, 383–430.

    Article  MathSciNet  MATH  Google Scholar 

  10. Y.P. Bibilo and R.R. Gontsov, On the Malgrange isomonodromic deformations of non-resonant meromorphic (2 × 2) connections. http://arxiv.org/abs/1201.0181v1 [math.CA]

    Google Scholar 

  11. A. Borodin and P. Deift, Fredholm determinants, Jimbo-Miwa-Ueno U-functions, and representation theory. Comm. Pure Appl. Math. 55 (2002), no. 9, 1160–1230

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Borodin and G. Olshanski, Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Ann. of Math.(2) 161 (2005), no. 3, 1319– 1422.

    Google Scholar 

  13. A.J. Calderón Martín and F. Forero Piulestán, Roots and root spaces of compact Banach–Lie algebras. Irish Math. Soc. Bulletin 49 (2002), 15–22.

    MATH  Google Scholar 

  14. P.A. Clarkson, Painlevé equations – nonlinear special functions. Proceedings of the 6th International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Rome 2001), J. Comput. Appl. Math. 153, (2003), no. 1-2, 127– 140.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Conte and M. Musette, The Painlevé handbook. Springer-Verlag, Dordrecht, 2008.

    Google Scholar 

  16. A. Devinatz and M. Shibrot, General Wiener–Hopf operators. Trans. Amer. Math. Soc. 145 (1969), 467–494.

    Article  MathSciNet  MATH  Google Scholar 

  17. L.A. Dickey, Another example of a U-function. In (J. Harnad and J.E. Marsden, eds.) Proceedings of the CRM Workshop on Hamiltonian Systems, Transformation Groups and Spectral Transform Methods (1989: Montréal, Québec) (pp. 39–44). Montréal, QC, Canada: Centre de Recherches Mathématiques, 1990.

    Google Scholar 

  18. R.G. Douglas, Banach Algebra Techniques in Operator Theory (2nd Edition). Graduate Texts in Mathematics 179, Springer-Verlag, New York–Berlin, 1998.

    Google Scholar 

  19. R.G. Douglas and C. Pearcy, Spectral theory of generalized Toeplitz operators. Trans. Amer. Math. Soc. 115 (1965), 443–444.

    Article  MathSciNet  Google Scholar 

  20. M.J. Dupré and J.F. Glazebrook, Infinite dimensional manifold structures on principal bundles. J. of Lie Theory 10 (2000), 359–373.

    MATH  Google Scholar 

  21. M.J. Dupré and J.F. Glazebrook, The Stiefel bundle of a Banach algebra. Integral Equations Operator Theory 41 (3) (2001), 264–287.

    Article  MathSciNet  MATH  Google Scholar 

  22. M.J. Dupré, J.F. Glazebrook and E. Previato, A Banach algebra version of the Sato Grassmannian and commutative rings of differential operators. Acta Applicandae Math. 92 (3) (2006), 241–267.

    Article  MATH  Google Scholar 

  23. M.J. Dupré, J.F. Glazebrook and E. Previato, The curvature of universal bundles of Banach algebras. In, ‘Proceedings of the International Workshop on Operator Theory and Applications – 2008’, eds. J. Ball et al., Operator Theory: Advances and Applications 202 (2010), 195–222, Birkhäuser-Verlag, Basel-Boston-Berlin.

    Google Scholar 

  24. M.J. Dupré, J.F. Glazebrook and E. Previato, Differential algebras with Banachalgebra coefficients I: From C*-algebras to the K-theory of the spectral curve. Complex Anal. Oper. Theory. (DOI) 10.1007/s11785-012-0221-2

    Google Scholar 

  25. M.J. Dupré, J.F. Glazebrook and E. Previato, Differential algebras with Banachalgebra coefficients II, The operator cross-ratio Tau function and the Schwarzian derivative. Complex Anal. Oper. Theory. (DOI) 10.1007/s11785-012-0219-9

    Google Scholar 

  26. J. Fay, Theta functions on Riemann surfaces. Lect. Notes in Math. 352, Springer- Verlag, Berlin 1973.

    Google Scholar 

  27. E. Frenkel, Affine Kac–Moody algebras, integrable systems and their deformations (‘Hermann Weyl Prize Lecture’). In (J.-P. Gazeau et al. eds.) Group 24: Physical and mathematical aspects of symmetries – Proceedings of the Colloquium on Group Theoretical Methods in Physics (24th: 2002: Paris, France), pp. 21–32, Institute of Physics Conference Series 173, Bristol, UK, 2003.

    Google Scholar 

  28. I. Gohberg, S. Goldberg and N. Krupnik, Traces and determinants of linear operators. Operator Theory: Advances and Applications 116 (2), Birkhäuser-Verlag, Basel-Boston-Berlin, 2000.

    Google Scholar 

  29. I. Gohberg, S. Goldberg and M.A. Kaashoek, Basic classes of linear operators. Birkhäuser-Verlag, Basel, 2003.

    Google Scholar 

  30. I. Gohberg and J. Leiterer, Factorization of operator functions with respect to a contour. I. Finitely meromorphic operator functions. (Russian) Math. Nachr. 72 (1972), 259–282.

    MathSciNet  Google Scholar 

  31. I.C. Gohberg and E.I. Sigal, An operator generalization of the logarithmic residue and Rouché’s theorem. (Russian). Math. Sb. (N.S.) 84(126) (1971), 607–629.

    Google Scholar 

  32. P.R. Halmos and V.S. Sunder, Bounded integral operators on C2-spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 96, Springer-Verlag, Berlin-New York, 1978.

    Google Scholar 

  33. J. Harnad and A.R. Its, Integrable Fredholm operators and dual isomonodromic deformations. Commun. Math. Phys. 226 (2002), 497–530.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. de la Harpe, Classical Banach–Lie Algebras and Banach–Lie groups of operators in Hilbert space. Lect. Notes in Math. 285, Springer-Verlag, Berlin-New York, 1972.

    Google Scholar 

  35. J.W. Helton, Operator Theory, Analytic Functions, Matrices and Electrical Engineering. CBMS Reg. Conf. Ser. 68, Amer. Math. Soc., Providence RI, 1987.

    Google Scholar 

  36. M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I. General theory and U- function. Phys. D 2 (1981), no. 2, 306–352.

    MathSciNet  MATH  Google Scholar 

  37. M. Jimbo, T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II. Phys. D 2 (1981), no. 3, 407–448.

    Article  MathSciNet  MATH  Google Scholar 

  38. V.G. Kac, Infinite Dimensional Lie Algebras. 3rd edition, Cambridge University Press, Cambridge-New York, 1990.

    Google Scholar 

  39. V. Katsnelson and D. Volok, Rational solutions of the Schlesinger system and isoprincipal deformations of rational matrix functions. I. ‘Current trends in operator theory and its applications’, 291–348. Operator Theory Advances and Applications 149, Birkhäuser Verlag, Basel, 2004.

    Google Scholar 

  40. A.V. Kitaev and D.A. Korotkin, On solutions of the Schlesinger equations in terms of Θ-functions. Internat Math. Res. Notices 17, (1998), 877–905.

    Article  MathSciNet  Google Scholar 

  41. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I. Interscience Tracts Pure and Appl. Math. 15, John Wiley & Sons, 1963.

    Google Scholar 

  42. D. Korotkin, N. Manojlovi´c and H. Sambtleben, Schlesinger transformations for elliptic isomonodromic deformations. J. Math. Phys. 41 (2000), no. 5, 3125–3141.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Kriegl and P.W. Michor, The Convenient Setting of Global Analysis. Math. Surveys and Monographs 53, Amer. Math. Soc., 1997.

    Google Scholar 

  44. J.L. Loday, Cyclic Homology. Grund. der math. Wissenschaften 301, Springer-Verlag, Berlin-New York, 1998.

    Google Scholar 

  45. J.D. McNeal, The Bergman projection as a singular integral operator. The Journal of Geometric Analysis 6, no. 1, (1994), 91–103.

    Article  MathSciNet  Google Scholar 

  46. B. Malgrange, Déformations isomonodromiques, forme de Liouville, fonction . Ann. Inst. Fourier (Grenoble) 54, no. 5, 1371–1392.

    Google Scholar 

  47. A.S. Markus and E.I. Sigal, The multiplicity of the characteristic of an analytic operator function. (Russian) Mat. Issled. 5 (1970), no. 3(17), 129–147.

    Google Scholar 

  48. L.J. Mason, M.A. Singer and N.M.J. Woodhouse, Tau functions and the twistor theory of integrable systems. J. Geom. and Phys. 32 (2000), 397–430.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Melnikov, Finite-dimensional Sturm–Liouville vessels and their tau functions. Integral Equations Operator Theory 71 (2011), 455–490.

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Miwa, On Hirota’s difference equations. Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 1, 9–12.

    Article  MathSciNet  MATH  Google Scholar 

  51. T. Nakazi and T. Yamamoto, Generalized Riesz projections and Toeplitz operators. Math. Inequal. Appl. 11 (2008), no. 3, 507–528.

    MathSciNet  MATH  Google Scholar 

  52. K.-H. Neeb, Infinite-dimensional groups and their representations. In (J.P. Anker and B. Orsted, eds.) Lie Theory-Lie Algebras and Representations, pp. 213–328. Prog. in Math. 228, Birkhäuser-Verlag, Boston, 2004.

    Google Scholar 

  53. M. Noumi and Y. Yamada, Affine Weyl groups, discrete dynamical systems and Painlevé equations. Commun. Math. Phys. 199 (1988), 281–295. [54] K. Okamoto, On the U-function of the Painlevé equations. Physica D: Nonlinear Phenomena 2(3), 525–535.

    Google Scholar 

  54. A. Pietsch, Eigenvalues and U-numbers. Cambridge Studies in Advanced Mathematics 13. Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  55. J.F. Plebanski, Some solutions of complex Einstein equations. J. Math. Phys. 16 (1975), 2395–2404.

    Article  MathSciNet  Google Scholar 

  56. A. Pressley and G. Segal, Loop Groups and their Representations. Oxford University Press, Oxford, 1986.

    Google Scholar 

  57. A.K. Raina, Fay’s trisecant identity and conformal field theory. Commun. Math. Phys. 122 (1989) (4), 625–641.

    Google Scholar 

  58. M. Sato, The KP-hierarchy and infinite dimensional Grassmann manifolds. Proc. Sympos. Pure Math. 49 Part 1, pp. 51–66, Amer. Math. Soc., 1989.

    Google Scholar 

  59. M. Sato, T. Miwa and M. Jimbo, Aspects of holonomic quantum fields. Isomonodromic deformations and Ising model. In (D. Iagolnitzer, ed.) ‘Complex analysis, microlocal calculus and relativistic quantum field theory (La Houches, 1979)’. Lect. Notes in Physics 126 (1980), Springer-Verlag, Berlin-Heidelberg-New York, 429–491.

    Google Scholar 

  60. J.R. Schue, Hilbert space methods in the theory of Lie algebras. Trans. Amer. Math. Soc. 95 (1960), no. 1, 69–80.

    Article  MathSciNet  MATH  Google Scholar 

  61. J.R. Schue, Cartan decompositions for L*-algebras. Trans. Amer. Math. Soc. 98 (1961), no. 1, 334–349.

    MathSciNet  MATH  Google Scholar 

  62. G. Segal and G. Wilson, Loop groups and equations of KdV type. Publ. Math. IHES 61 (1985), 5–65.

    Article  MathSciNet  MATH  Google Scholar 

  63. B. Simon, Trace Ideals and Their Applications. London Math. Soc. Lecture Notes 35, Cambridge University Press, Cambridge, 1979.

    Google Scholar 

  64. J.F. Smith, The p-classes of a Hilbert module. Proc. Amer. Math. Soc. 36 (2) (1972), 428–434.

    MathSciNet  Google Scholar 

  65. K. Takasaki, Symmetries and tau function of higher-dimensional dispersionless integrable hierarchies. J. Math. Phys. 36 (1995), no. 7, 3574–3607.

    Article  MathSciNet  MATH  Google Scholar 

  66. C.A. Tracy and H. Widom, Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163 (1994), no. 1, 33–72.

    Article  MathSciNet  MATH  Google Scholar 

  67. Y. Yamada, Determinant formulas for the U-functions of the Painlevé equations of type A. Nagoya Math. J. 156 (1999), 123–134.

    MathSciNet  MATH  Google Scholar 

  68. H. Upmeier, Toeplitzop erators and Index Theory in several complex variables. Operator Theory: Advances and Applications 81, Birkhäuser Verlag, Basel – Boston – Berlin, 1996.

    Google Scholar 

  69. M.I. Zelikin, Geometry of operator cross ratio. Math. Sbornik 197 (1) (2006), 39–54.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Glazebrook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this paper

Cite this paper

Glazebrook, J.F. (2014). Wiener–Hopf Type Operators and Their Generalized Determinants. In: Cepedello Boiso, M., Hedenmalm, H., Kaashoek, M., Montes Rodríguez, A., Treil, S. (eds) Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Operator Theory: Advances and Applications, vol 236. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0648-0_13

Download citation

Publish with us

Policies and ethics