Skip to main content

Lagrange Anchor for Bargmann–Wigner Equations

  • Conference paper
  • First Online:
Geometric Methods in Physics

Part of the book series: Trends in Mathematics ((TM))

Abstract

A Poincaré invariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s >1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law.

Mathematics Subject Classification (2010). Primary 70S10; Secondary 81T70.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kosmann-Schwarzbach Y., The Noether theorems: Invariance and conservation laws in the twentieth century. Springer, New York, 2011.

    Google Scholar 

  2. Kaparulin D.S., Lyakhovich S.L., Sharapov A.A., Rigid symmetries and conservation laws in non-Lagrangian field theory. J. Math. Phys. 51 (2010), 082902.

    Article  MathSciNet  Google Scholar 

  3. Kaparulin D.S., Lyakhovich S.L. and Sharapov A.A., Local BRST cohomology in (non-)Lagrangian field theory. JHEP 1109:006.

    Google Scholar 

  4. P.O. Kazinski, S.L. Lyakhovich, and A.A. Sharapov, Lagrange structure and quantization. JHEP 0507:076.

    Google Scholar 

  5. M.A. Vasiliev, Actions, charges and off-shell fields in the unfolded dynamics approach. Int. J. Geom. Meth. Mod. Phys. 3 (2006), 37–80.

    Article  MathSciNet  Google Scholar 

  6. M.A. Vasiliev, Higher spin theories in various dimensions. Fortsch. Phys. 52 (2004), 702–717.

    Article  MathSciNet  MATH  Google Scholar 

  7. X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions. Proc. of the First Solvay Workshop on Higher-Spin Gauge Theories (Brussels, 2004), 132–197.

    Google Scholar 

  8. D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov, On Lagrange structure of unfolded field theory. Int. J. Mod. Phys. A26 (2011), 1347–1362.

    Article  MathSciNet  Google Scholar 

  9. Penrose R., Rindler W., Spinors and space-time. Vol. I and II, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  10. Lipkin D., Existence of a new conservation law in electromagnetic theory. J. Math. Phys. 5 (1964), 696–700.

    Article  MathSciNet  MATH  Google Scholar 

  11. Morgan T., Two classes of new conservation laws for the electromagnetic field and for other massless fields. J. Math. Phys. 5 (1964), 1659–1660.

    Article  MATH  Google Scholar 

  12. Kibble T.W.B., Conservation laws for free fields. J.Math. Phys. 6 (1965), 1022–1026.

    Article  MathSciNet  Google Scholar 

  13. Fairlie D.B., Conservation laws and invariance principles. Nuovo Cimento 37 (1965), 897–904.

    Article  MathSciNet  MATH  Google Scholar 

  14. FushchichW.I., Nikitin A.G., Symmetries of equations of quantum mechanics. Allerton Press Inc., New York, 1994.

    Google Scholar 

  15. Konstein S.E., Vasiliev M.A., Zaikin V.N., Conformal higher spin currents in any dimension and AdS/CFT correspondence. JHEP 0012:018.

    Google Scholar 

  16. Anco S., Pohjanpelto J., Classification of local conservation laws of Maxwell’s equations. Acta Appl. Math. 69 (2001), 285–327.

    Article  MathSciNet  MATH  Google Scholar 

  17. Vasiliev M.A., Gelfond O.A., Skvortsov E.D., Conformal currents of fields of higher spins in Minkowski space. Theor. Math. Phys. 154 (2008), 294–302.

    Article  MATH  Google Scholar 

  18. Anco S., Pohjanpelto J., Conserved currents of massless fields of spin s > 0. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.459 (2003), 1215–1239.

    Article  MathSciNet  MATH  Google Scholar 

  19. Anco S., Pohjanpelto J., Generalized symmetries of massless free fields on Minkowski space. SIGMA 4 (2008), 004.

    MathSciNet  Google Scholar 

  20. D.S. Kaparulin, S.L. Lyakhovich, and A.A. Sharapov, BRST analysis of general mechanical systems. arXiv:1207.0594.

    Google Scholar 

  21. K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry. London Math. Soc. Lecture Notes Series 124, Cambridge Univ. Press, 1987.

    Google Scholar 

  22. S.L. Lyakhovich and A.A. Sharapov, Schwinger–Dyson equation for non-Lagrangian field theory. JHEP 0602:007.

    Google Scholar 

  23. S.L. Lyakhovich and A.A. Sharapov, Quantization of Donaldson–Uhlenbeck–Yau theory. Phys. Lett. B656 (2007), 265–271.

    Article  MathSciNet  Google Scholar 

  24. S.L. Lyakhovich and A.A. Sharapov, Quantizing non-Lagrangian gauge theories: An augmentation method. JHEP 0701:047.

    Google Scholar 

  25. D.S. Kaparulin, S.L. Lyakhovich, and A.A. Sharapov, Lagrange Anchor and Characteristic Symmetries of Free Massless Fields. SIGMA 8 (2012), 021.

    MathSciNet  Google Scholar 

  26. Dickey L.A. Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, Vol. 12. Singapore, World Scientific, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kaparulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Kaparulin, D.S., Lyakhovich, S.L., Sharapov, A.A. (2013). Lagrange Anchor for Bargmann–Wigner Equations. In: Kielanowski, P., Ali, S., Odesskii, A., Odzijewicz, A., Schlichenmaier, M., Voronov, T. (eds) Geometric Methods in Physics. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0645-9_10

Download citation

Publish with us

Policies and ethics