Skip to main content

Climate

  • Chapter
  • First Online:
  • 1233 Accesses

Abstract

The most intensive interaction between the grapevine and its surrounding environment, and the only pathway to achieving high-quality results, is mediated by an understanding and the sapient utilisation of the physical elements that constitute all viticultural areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Barbeau G, Bournand S, Champenois R, Bouvet MH, Blin A, Cosneau M (2011) Comportement de quatre cépages rouges en Val de Loire en function des variables climatiques. J Int Sci Vigne Vin 37:199

    Google Scholar 

  • Carey V, Archer E, Barbeau G, Saayman D (2008) Viticultural terroirs in Stellenbosch, South Africa. II. The interaction of cabernet Sauvignon and Sauvignon Blanc with environment. J Int Sci Vigne Vin 42:185–220

    CAS  Google Scholar 

  • Cohen SD, Tarara JM, Kennedy JA (2012) Diurnal temperature range compression hastens berry development and modifies flavonoid partitioning in grapes. Am J Enol Vitic 63:112–120

    Article  CAS  Google Scholar 

  • Deloire A, Carbonneau A, Wang Z, Ojeda H (2004) Vine and water: a short review. J Int Sci Vigne Vin 38:1–13

    CAS  Google Scholar 

  • Downton WJS, Grant WJR, Loveys BR (1987) Diurnal changes in the photosynthesis of field-grown grape vines. New Phytol 105:71–80

    Article  Google Scholar 

  • Dry PR, Simos CA, Pretorius IS (2009) Do we need a new approach to bunch exposure in Australian vineyards? Aust NZ Wine Ind J 24:28–30

    Google Scholar 

  • Durand R, Legros JP (1981) Cartographie automatique de l’energie solaire en fonction du relief. Agronomie 1:31–39

    Article  Google Scholar 

  • Flint AL, Childs SW (1987) Calculation of solar radiation in mountainous terrain. Agric For Meteorol 40:233–249

    Article  Google Scholar 

  • Fregoni M (2005) Viticoltura di qualità. Pytoline Ed. Piacenza

    Google Scholar 

  • Guyot G (1999) Climatologie de l’Environnement. Dunod, Paris

    Google Scholar 

  • Hoare T (2009) The benefits and risks of shoot-thinning. Australian viticulture Nov/Dec, pp 37–41

    Google Scholar 

  • Huglin P (1978) Nouveau mode d’évaluation des possibilités héliothermiques de la vigne. C R Acad Agric Fr 1117–1126

    Google Scholar 

  • Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition and wine production and quality for Bordeaux. France Am J Enol Vitic 51:249–261

    Google Scholar 

  • Jones GV (2006) Climate and terroir: impacts of climate variability and change on wine. In: Macqueen RW, Meinert LD (eds) Fine wine and terroir—the geoscience perspective. Geoscience Canada Reprint Series Number 9, Geological Association of Canada, St. John’s, Newfoundland

    Google Scholar 

  • Kliewer WM (1973) Berry composition of Vitis vinifera cultivars as influenced by photo- and nycto-temperatures during maturation. J Am Soc Hortic Sci 98:153–159

    Google Scholar 

  • Kliewer WM (1975) Effect of root temperature on budbreak, shoot growth, and fruit-set of ‘Cabernet Sauvignon’ grapevines. Am J Enol Vitic 26:82–89

    Google Scholar 

  • Kriedemann PE (1968) Photosynthesis in vine leaves as a function of light intensity, temperature, and leaf age. Vitis 7:213–220

    Google Scholar 

  • Marais J, Hunter JJ, Haasbroek PD (1999) Effect of microclimate, season and region on Sauvignon blanc grape composition and wine quality. S Afr J Enol Vitic 20:19–30

    CAS  Google Scholar 

  • Morlat R (1989) Le terroir viticole: contribution à l’étude de sa caractérisation et de son influence sur le vin. Application aux vignobles rouges de Moyenne Vallée de la Loire. Thèse Univ. de Bordeaux II, France

    Google Scholar 

  • Morlat R, Asselin C (1993) Terroirs et qualité des vins. Purpan 166:46–55

    Google Scholar 

  • Pentimalli E (1983) Il Clima nel Trevigiano. Rivista di Meteorologia aeronautica

    Google Scholar 

  • Reynolds AG, Wardle DA, Naylor AP (1996) Impact of training system, vine spacing, and basal leaf removal on Riesling. Vine performance, berry composition, canopy microclimate, and vineyard labor requirements. Am J Enol Vitic 47:63–76

    Google Scholar 

  • Sánchez LA, Dokoozlian NK (2005) Bud microclimate and fruitfulness in Vitis vinifera L. Am J Enol Vitic 56:319–329

    Google Scholar 

  • Scheiner JJS, Gavin L, Pan B, Ennahli S, Tarlton L, Wise A, Lerch SD, Vanden Heuvel JE (2010) Impact of severity and timing of basal leaf removal on 3-isobutyl-2-methoxypyrazine concentrations in red winegrapes. Am J Enol Vitic 61:358–364

    CAS  Google Scholar 

  • Schultz HR (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine Res 6:2–12

    Article  CAS  Google Scholar 

  • Smart RE (1985) Principles of grapevine canopy microclimate manipulation with implications for yield and quality. A Review. Am J Enol Vitic 36:230–239

    Google Scholar 

  • Spayd S, Tarara J, Mee D, Ferguson J (2002) Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am J Enol Vitic 53:171–182

    CAS  Google Scholar 

  • Tomasi D, Jones GV, Giust M, Lovat L, Gaiotti F (2011) Grapevine phenology and climate change: relationships and trends in the Veneto region of Italy for 1964–2009. Am J Enol Vitic 62:329–339

    Article  Google Scholar 

  • Van Leeuwen C, Tregoat O, Choné X, Bois B, Pernet D, Gaudillère JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes. J Int Sci Vigne Vin 43(3):121–134

    Google Scholar 

  • Van Leeuwen C, Friant F, Choné X, Tregoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil, and cultivar on Terroir. Am J Enol Vitic 55:207–217

    Google Scholar 

  • Wang S, Chen W, Cihlar J (2002) New calculation methods of diurnal distribution of solar radiation and its interception by canopy over complex terrain. Ecol Model 155:191–204

    Article  Google Scholar 

  • Williams LE, Dokoozlian NK, Wample RL (1994) Grape. In: Schaffer B, Andersen PC (eds) Handbook of environmental physiology of fruit crops, vol 1. Temperate crops. CRC Press, Boca Raton

    Google Scholar 

  • Zelleke A, Kliewer WM (1980) Effect of root temperature, rootstock and fertilization on bud-break, shoot growth and composition of ‘Cabernet Sauvignon’ grapevines. Sci Hortic 13:339–347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Tomasi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Tomasi, D., Gaiotti, F., Jones, G.V. (2013). Climate. In: The Power of the Terroir: the Case Study of Prosecco Wine. Springer, Basel. https://doi.org/10.1007/978-3-0348-0628-2_4

Download citation

Publish with us

Policies and ethics