Skip to main content

Part of the book series: Studies in Universal Logic ((SUL))

  • 1385 Accesses

Abstract

Data structures, orderings and applied classifications are generally defined on finite sets or sets of relations, which supposes that we know what are such entities (Sect. 2.3). But a part of classification research deals with data mining and the constitution of structured domains of concepts or objects. The fact that a mathematical structure, the Galois connection, contains a quasi-exhaustive information about the correspondence of two sets (Sect. 2.4) has suggested to use this structure in association with an order relation (Sect. 2.5) to initiate formal conceptual analysis (Sect. 2.6). But formal concepts are not real concepts. The exploration of concrete structures of objects has then led to the construction of formal (Sect. 2.7) and regional (Sect. 2.8) ontologies, using sometimes, as Barry Smith does, non-classical logics (the mereology of Lesniewski). In all this chapter, we study these models in relation to the main problems of classification and, finally, discuss (Sect. 2.9) the theories and results that have been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notion of a Galois connection has its roots in Galois theory. By a fundamental theorem of Galois theory, there is a one-to-one correspondence between the intermediate fields between a field L and its subfield F (with appropriate conditions imposed on the extension L/F), and the subgroups of the Galois group Gal(L/F) such that the bijection is inclusion-reversing:

    $$\mathit{Gal}(L/F)\supseteq H\supseteq\langle e \rangle\quad\mbox{iff}\quad F\subseteq L^H\subseteq L, \quad \mbox{and} $$
    $$F\subseteq K\subseteq L\quad\mbox{iff}\quad \mathit{Gal}(L/F)\supseteq \mathit{Gal}(L/K) \supseteq\langle e \rangle $$
  2. 2.

    Recall that a complete lattice is a lattice in which every subset admits a greatest lower bound and a least upper bound. The lattice itself being one of its own subsets, it follows that it has a (unique) infimum and a (unique) supremum.

  3. 3.

    This database comes from the UCI KDD Archive (http://kdd.ics.uci.edu/).

  4. 4.

    The existence, in the language, of such oppositions, and particularly the difference between contradiction and contrariety, has suggested to Sommers (see [468], VII–VIII), a staunch proponent of a traditionalist view of logic, to develop a new “Calculus of Terms”, significantly different—in his eyes—from the predicate logic, but closer to some of the Leibniz’s proposals. In particular, in [468], Chap. 13, the author indicates how traditional logic’s way with contrariety leads to the conception of categories that is at the basis of Ryle’s seminal work in the forties (see [438]) and his own more formal treatment of categories in the early sixties (see [467]). More precisely, Sommers recognizes the need for a notion of contrariety that would allow for saying, for example, that “Saturday is neither fed nor unfed” (which renders both “Saturday is fed” and “Saturday is unfed” category mistakes in the sense of [438]). This kind of problems prompts him to re-examine traditional Aristotelian logic and its characteristic distinction between contrary terms or predicates and contradictory propositions.

  5. 5.

    Open Biological and Biomedical Ontologies.

References

  1. Anderson, I.: Combinatorics of Finite Sets. Clarendon, Oxford (1987)

    MATH  Google Scholar 

  2. Anscombe, G.E.M., Geach, P.: Three Philosophers. Blackwell Sci., Oxford (1961)

    Google Scholar 

  3. Arnaud, A., Nicole, P.: La logique ou l’art de penser. Ch. Savreux, Paris (1662)

    Google Scholar 

  4. Barbut, M.: Note sur l’algèbre des techniques d’analyses hiérarchiques. In: Matalon, B. (ed.) L’analyse hiérarchique. Gauthier-Villars, Paris (1965)

    Google Scholar 

  5. Barbut, M., Monjardet, B.: Ordre et classification, algèbre et combinatoire, vol. 1. Librairie Hachette, Paris (1970)

    Google Scholar 

  6. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. Tracts in Theoretical Computer Science, vol. 44. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  7. Bittner, Th., Smith, B.: Granular partitions and vaguenes. In: Proceeding of the International Conference on Formal Ontology in Information Systems, pp. 309–320 (2001)

    Google Scholar 

  8. Bittner, Th., Smith, B.: A taxonomy of granular partitions. In: Proceedings of the International Conference on Spatial Information Theory: Foundations of Geographic Information Science, pp. 28–43. Springer, London (2001)

    Google Scholar 

  9. Bittner, Th., Smith, B.: A theory of granular partitions. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations of Geographic Information Science, pp. 117–151. Taylor & Francis, London (2003)

    Chapter  Google Scholar 

  10. Burmeister, P., Holzer, R.: On the treatment of incomplete knowledge in formal concept analysis. In: Ganter, B., Mineau, G. (eds.) Conceptual Structures: Logical, Linguistic and Computational Issues, pp. 385–398. Springer, Berlin

    Google Scholar 

  11. Butchvarov, P.: Review of “Jan Westerhoff, Ontological Categories: Their Nature and Significance. Oxford: Clarendon Press, 2005. xiv + 263 pages”. Philos. Q. 57(227), 301–303 (2007)

    Article  Google Scholar 

  12. Carnap, R.: The Logical Structure of the World, Pseudoproblems in Philosophy. University of California Press, Berkeley (1967). Transl. of Der Logische Aufbau der Welt, Weltkreis-Verlag, Berlin (1928)

    Google Scholar 

  13. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  14. Caspard, N., Leclerc, B., Monjardet, B.: Ensembles ordonnés finis: concepts, résultats et usages. Springer, Berlin (2007)

    MATH  Google Scholar 

  15. Choi, V., Huang, Y., Lam, V., Potter, D., Laubenbacher Duca, K.: Using formal concept analysis for microarray data comparison. In: Proceeding Trim Size, October 2008

    Google Scholar 

  16. Choi, V.: Faster algorithms for constructing a concept (Galois) lattice. Presented at Siam Conference on Discrete Mathematics, University of Victoria, Canada, 2006. arXiv:cs.DM/0602069

  17. Cocchiarella, N.: Ontology II: formal ontology. In: Burkhardt, H., Smith, B. (eds.) Handbook of Metaphysics and Ontology. Philosophia Verlag, Munich (1991)

    Google Scholar 

  18. Cocchiarella, N.: Formal Ontology and Conceptual Realism. Springer, New York (2007)

    MATH  Google Scholar 

  19. Cocchiarella, N.: Actualism versus possibilism in formal ontology. In: Poli, R., Seibt, J. (eds.) Theory and Applications of Ontology, vol. 1: Philosophical Perspectives, pp. 105–118. Springer, Dordrecht (2010)

    Chapter  Google Scholar 

  20. Couturat, L.: Opuscules et fragments inédits de Leibniz. Alcan, Paris (1903). Reprinted Georg Olms, Hildesheim (1961)

    Google Scholar 

  21. Cross, V., Kandasamy, M., Wenting, Y.: Fuzzy concept lattices: Examples using the gene ontology. In: Fuzzy Information Processing Society, 12–14 July 2010, pp. 1–6

    Google Scholar 

  22. De la Cruz, O., Dzhafarov, D.D., Hall, E.J.: Definitions of finiteness based on order properties. Fundam. Math. 189, 155–172 (2006)

    Article  MATH  Google Scholar 

  23. Duquenne, V.: Contextual implications between attributes and some representation properties for finite lattices. In: Ganter, B., et al. (eds.) Beiträge zur Begriffsanalyse, pp. 213–239. Wissenschaftverlag, Mannheim (1987)

    Google Scholar 

  24. Dyvik, H.: A translational basis for semantics. In: Johansson, H., Oksefjell, S. (eds.) Corpora and Crosslinguistic Research: Theory, Method and Case Studies, pp. 51–86. Rodopi, Amsterdam (1998)

    Google Scholar 

  25. Fine, K.: A study of ontology. Noûs 25, 263–294 (1991)

    Article  Google Scholar 

  26. Fraïssé, R.: Logique mathématique, t. 1. Gauthier-Villars, Paris (1971)

    Google Scholar 

  27. Frasnay, C.: Notes to the C.R. Acad. Sci. Paris, 1962–1963–1964: a) t. 255, 2878–2879; b) t. 256, 2507–2510; c) t. 257, 1825–1828; d) t. 257, 2944–2947; e) t. 258, 1373–1376; f) t. 259, 3910–3913

    Google Scholar 

  28. Frasnay, C.: Quelques problèmes combinatoires concernant les ordres totaux et les relations monomorphes. Ann. Inst. Fourier 15(2), 415–524 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  30. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis: Foundations and Applications. Lecture Notes in Artificial Intelligence, vol. 3626. Springer, Berlin (2005)

    MATH  Google Scholar 

  31. Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a Galois lattice with conventional information retrieval methods. Int. J. Man-Mach. Stud. 38, 747–767 (2000)

    Article  Google Scholar 

  32. Godin, R., Mineau, G., Missaoui, R., Hafedh, M.: Méthodes de classification conceptuelle basées sur les treillis de Galois et applications. Rev. Intell. Artif. 9(2), 105–137 (1995)

    Google Scholar 

  33. Goodman, N.: Structure of Appearance (1951), 3rd edn. Reidel, Dordrecht (1977)

    Book  Google Scholar 

  34. Grätzer, G.: General Lattice Theory, 3rd edn. Birkhaüser, Basel (2003)

    MATH  Google Scholar 

  35. Grossmann, R.: The Categorial Structure of the World. Indiana University Press, Bloomington (1983)

    Google Scholar 

  36. Gruber, T.: Towards principles for the design of ontologies used for knowledge sharing. Int. J. Hum.-Comput. Stud. 46(2/3), 293–310 (1997)

    Google Scholar 

  37. Guénoche, A.: Hiérarchies conceptuelles de données binaires. Math. Inf. Sc. Hum. 121, 23–34 (1993)

    MATH  Google Scholar 

  38. Gusakova, S.M., Kuznetsov, S.O.: On Moscow St. Petersburg taxonomy schools. In: Angelova, G., Corbett, D., Priss, U. (eds.) Foundations and Applications of Conceptual Structures Contributions to ICCS 2002, pp. 92–101 (2002). Bulgarian Academy of Sciences

    Google Scholar 

  39. Howard, P.E., Yorke, M.F.: Definitions of finite. Fundam. Math. 133(3), 169–177 (1989)

    MathSciNet  MATH  Google Scholar 

  40. Husserl, E.: Introduction to the Logical Investigations. Nijhoff, The Hague (1975). A draft of a preface to the Logical Investigations (1913). Edited by Eugen Fink, tr. Philip J. Bossert and Curtis H. Peters

    Book  Google Scholar 

  41. Husserl, E.: Ideas pertaining to a pure phenomenology and to a phenomenological philosophy. Nijhoff, The Hague (1982). First book. General introduction to a pure phenomenology (1913). Tr. F. Kersten

    Book  Google Scholar 

  42. Kant, E.: Logique. Vrin, Paris (1970)

    Google Scholar 

  43. Kaufmann, A., Pichat, E.: Méthodes mathématiques non numériques et leurs algorithmes, tome 1, Algorithmes de recherche des éléments maximaux. Masson, Paris (1977)

    Google Scholar 

  44. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14, 189–216 (2002)

    Article  MATH  Google Scholar 

  45. Kwuida, L.: Dicomplemented lattices, a contextual generalization of boolean algebras. Doctor Dissertation, Fakultät Mathematik une Naturwissenschaften, Technischen Universität, Dresden, 2004

    Google Scholar 

  46. Laborde, J.-M.: Méréologie, logique des blocs, pseudo-topologies sur des repères. Rev. Bio-mat. 61, 21–42 (1978)

    Google Scholar 

  47. Laukaitis, A., Vasilecas, O.: Formal concept analysis for business information systems. Inf. Technol. Control 37(1), 33–37 (2008)

    Google Scholar 

  48. Lesniewski, S.: Sur les fondements de la mathématique. Hermès, Paris (1989)

    MATH  Google Scholar 

  49. Liquiere, M., Sallantin, J.: Structural machine learning with Galois lattice and graphs. In: ICML’98, 5th International Conference on Machine Learning, Madison, Wisconsin, US, July 24–27, 1998, pp. 305–313

    Google Scholar 

  50. M’adche, A., Staab, S.: Mining ontologies from text. In: Dieng, R., Corby, O. (eds.) Knowledge Engineering and Knowledge Management. Methods, Models, and Tools, Proc. EKAW’00. LNAI, vol. 1937, pp. 189–202. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  51. Meyen, S.V.: Taxonomy and meronomy. In: Methodological Problems in Geological Sciences, Kiev, p. 36-33 (1977) (in Russian)

    Google Scholar 

  52. Meyen, S.V., Schreider, J.A.: Methodological aspects of classification theory. Voprosy filosofii (Problems of philosophy) 12, 67–79 (1976) (in Russian)

    Google Scholar 

  53. Old, L.J., Priss, U.: Metaphor and information flow. In: Proceedings of the 12th Midwest Artificial Intelligence and Cognitive Science Conference, pp. 99–104 (2001)

    Google Scholar 

  54. Oliver, A.: The metaphysics of properties. Mind 105(417), 1–80 (1996)

    Article  Google Scholar 

  55. Parrochia, D.: Formes et systématiques philosophiques. Thèse, Université Jean Moulin, Lyon 3, 1988

    Google Scholar 

  56. Parrochia, D.: Mathématiques et existence. Champ Vallon, Seyssel (1991)

    Google Scholar 

  57. Parrochia, D.: La Raison systématique. Vrin, Paris (1993)

    Google Scholar 

  58. Parrochia, D.: La forme générale de la philosophie husserlienne et la théorie des multiplicités. Kairos 5, 133–164 (1994)

    Google Scholar 

  59. Parrochia, D.: La conception technologique. Hermès, Paris (1998)

    Google Scholar 

  60. Pawlak, Z.: Rough sets. Int. J. Parallel Program. 11(5), 341–356 (1982)

    MathSciNet  MATH  Google Scholar 

  61. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  62. Pernelle, V., Ventos, V., Soldano, H.: ZooM: Alpha Galois lattices for conceptual clustering. In: Int. Conf. on Data Mining (ICDM’04), pp. 555–558. IEEE Press, Brighton (2004)

    Google Scholar 

  63. Perzanowski, J.: Ontologies and ontologics. In: Zarnecka-Bialy, E. (ed.) Logic Counts. Kluwer, Dordrecht (1990)

    Google Scholar 

  64. Poli, R.: Ontology for knowledge organization. In: Green, R. (ed.) Knowledge Organization and Change, pp. 313–319. Indeks, Frankfurt (1996)

    Google Scholar 

  65. Poli, R.: Descriptive, formal and formalized ontologies. In: Fisette, D. (ed.) Husserl’s Logical Investigations Reconsidered, pp. 183–210. Kluwer, Dordrecht (2003)

    Chapter  Google Scholar 

  66. Priss, U.: Formal concept analysis in information science. Annu. Rev. Inform. Sci. Technol. 40(1), 521–543 (2006)

    Article  Google Scholar 

  67. Rock, T., Wille, R.: Ein TOSCANA-Erkundungssystem zur Literatursuche. In: Stumme, G., Wille, R. (eds.) Begriffliche Wissensverarbeitung. Methoden und Anwendungen, pp. 239–253. Springer, Berlin (2000)

    Chapter  Google Scholar 

  68. Rodriguez-Pereyra, G.: Resemblance Nominalism, a Solution to the Problem of Universals. Oxford Clarendon Press, Oxford (2002)

    Book  Google Scholar 

  69. Ryle, G.: The Concept of Mind. University of Chicago Press, Chicago (1949)

    Google Scholar 

  70. Salton, G.: Automatic Information Organization and Retrieval. McGraw-Hill, New York (1968)

    Google Scholar 

  71. Schreider, J.A., Sharov, A.: Systems and Models. Radio i Sviaz, Moscow (1982) (in Russian)

    Google Scholar 

  72. Smith, B.: Boundaries: An essay in mereotopology. In: Hahn, L. (ed.) The Philosophy of Roderick Chisholm (Library of Living Philosophers), pp. 534–561. Open Court, LaSalle (1997)

    Google Scholar 

  73. Smith, B., Brogaard, B.: Quantum mereotopology. Ann. Math. Artif. Intell. 36(1–2), 153–175 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  74. Smith, B., Kumar, A.: Towards a proteomics metaclassification. In: Proceedings of Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE2004), Taiwan, 19–21 May 2004

    Google Scholar 

  75. Smith, B.: Against Fantology. In: Reicher, M.E., Marek, J.C. (eds.) Experience and Analysis, pp. 153–170. ÖBV-HPT, Vienna (2005)

    Google Scholar 

  76. Smith, D.W.: On situations and states of affairs. In: Seebohm, T.M., Føllesdal, D., Mohanty, J.N. (eds.) Phenomenology and the Formal Sciences, pp. 49–57. Kluwer Academic, Dordrecht (1991)

    Chapter  Google Scholar 

  77. Sommers, F.: Types and ontology. Philos. Rev. 72, 327–363 (1963)

    Article  Google Scholar 

  78. Sommers, F.: The Logic of Natural Language. Clarendon, Oxford (1982)

    Google Scholar 

  79. Sowa, J.F.: Conceptual Structures, Information Processing in Man and Machine. Addison-Wesley, Reading (1984)

    Google Scholar 

  80. Stumme, G., Taouil, R., Bastide, Y., Lakhal, L.: Conceptual Clustering with iceberg concept lattices. In: Klinkenberg, R., Rüping, S., Fick, A., Henze, N., Herzog, C., Molitor, R., Schröder, O. (eds.) Proc. GI-Fachgruppentreffen Maschinelles Lernen FGML01 p. 703 (2001). Universität Dortmund

    Google Scholar 

  81. Suppes, P.: Axiomatic Set Theory (1960). Van Nostrand

    MATH  Google Scholar 

  82. Tarski, A.: Sur les ensembles finis. Fundam. Math. 6, 45–95 (1924)

    Google Scholar 

  83. Twardowski, K.: On the Content and Objects of Presentations (1894). Tr. Reinhardt Grossmann, Nijhoff, The Hague (1977)

    Google Scholar 

  84. Westerhoff, J.: Ontological Categories, Their Nature and Significance. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  85. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Set, pp. 445–470. Reidel, Boston (1982)

    Chapter  Google Scholar 

  86. Wille, R.: Boolean concept logic. In: Ganter, B., Mineau, G. (eds.) Conceptual Structures: Logical, Linguistic and Computational Issues, pp. 317–333. Springer, Berlin

    Google Scholar 

  87. Wolff, Ch.: Preliminary Discourse on Philosophy in General (1728). Tr. Richard J. Blackwell, Indianapolis, The Bobbs-Merrill Company, Inc. (1963)

    Google Scholar 

  88. Yao, Y.Y.: Concept lattices in rough set theory. In: Dick, W.P.S., Kurgan, L., Reformat, M. (eds.) Proceedings of 2004 Annual Meeting or the North American Fuzzy Information Processing Society (NAFIPS 2004), pp. 796–801. IEEE Press, New York (2004). Catalog Number: 04YH8736

    Chapter  Google Scholar 

  89. Zhou, W., Zhao, Y., Liu, W., Xu, D., Liu, Z., Zhang, B., Xin, M.: Concept clustering on interval concept lattice for web exploring. http://litis.univ-lehavre.fr/~pigne/media-icccsa2009_submission_34_pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Parrochia, D., Neuville, P. (2013). Information Data Structures. In: Towards a General Theory of Classifications. Studies in Universal Logic. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0609-1_2

Download citation

Publish with us

Policies and ethics