Skip to main content

Bochner–Minlos Theorem and Quaternion Fourier Transform

  • Chapter
  • First Online:
Quaternion and Clifford Fourier Transforms and Wavelets

Part of the book series: Trends in Mathematics ((TM))

Abstract

There have been several attempts in the literature to generalize the classical Fourier transform by making use of the Hamiltonian quaternion algebra. The first part of this chapter features certain properties of the asymptotic behaviour of the quaternion Fourier transform. In the second part we introduce the quaternion Fourier transform of a probability measure, and we establish some of its basic properties. In the final analysis, we introduce the notion of positive definite measure, and we set out to extend the classical Bochner–Minlos theorem to the framework of quaternion analysis.

Mathematics Subject Classification (2010). Primary 30G35; secondary 42A38; tertiary 42A82.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bahri. Generalized Fourier transform in real clifford algebra cl(0, n). Far East Journal of Mathematical Sciences, 48(1):11–24, Jan. 2011.

    MathSciNet  MATH  Google Scholar 

  2. P. Bas, N. Le Bihan, and J.M. Chassery. Color image watermarking using quaternion Fourier transform. In Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP, volume 3, pages 521–524. Hong-Kong, 2003.

    Google Scholar 

  3. E. Bayro-Corrochano, N. Trujillo, and M. Naranjo. Quaternion Fourier descriptors for preprocessing and recognition of spoken words using images of spatiotemporal representations. Mathematical Imaging and Vision, 28(2):179–190, 2007.

    Article  MathSciNet  Google Scholar 

  4. F. Brackx, N. De Schepper, and F. Sommen. The Clifford–Fourier transform. Journal of Fourier Analysis and Applications, 11(6):669–681, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Brackx, N. De Schepper, and F. Sommen. The Fourier transform in Clifford analysis. Advances in Imaging and Electron Physics, 156:55–201, 2009.

    Article  Google Scholar 

  6. F. Brackx, R. Delanghe, and F. Sommen. Clifford Analysis, volume 76. Pitman, Boston, 1982.

    Google Scholar 

  7. T. Bülow. Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images. PhD thesis, University of Kiel, Germany, Institut für Informatik und Praktische Mathematik, Aug. 1999.

    Google Scholar 

  8. T. Bülow, M. Felsberg, and G. Sommer. Non-commutative hypercomplex Fourier transforms of multidimensional signals. In G. Sommer, editor, Geometric computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics, pages 187–207, Berlin, 2001. Springer.

    Google Scholar 

  9. J. Ebling and G. Scheuermann. Clifford Fourier transform on vector fields. IEEE Transactions on Visualization and Computer Graphics, 11(4):469–479, July/Aug. 2005.

    Google Scholar 

  10. T.A. Ell. Quaternion-Fourier transforms for analysis of 2-dimensional linear timeinvariant partial-differential systems. In Proceedings of the 32nd Conference on Decision and Control, pages 1830–1841, San Antonio, Texas, USA, 15–17 December 1993. IEEE Control Systems Society.

    Google Scholar 

  11. T.A. Ell and S.J. Sangwine. Hypercomplex Fourier transforms of color images. IEEE Transactions on Image Processing, 16(1):22–35, Jan. 2007.

    Article  MathSciNet  Google Scholar 

  12. S. Georgiev. Bochner–Minlos theorem and quaternion Fourier transform. In Gürlebeck [14].

    Google Scholar 

  13. S. Georgiev, J. Morais, and W. Sprößig. Trigonometric integrals in the framework of quaternionic analysis. In Gürlebeck [14].

    Google Scholar 

  14. K. Gürlebeck, editor. 9th International Conference on Clifford Algebras and their Applications, Weimar, Germany, 15–20 July 2011.

    Google Scholar 

  15. K. Gürlebeck and W. Sprößig. Quaternionic Analysis and Elliptic Boundary Value Problems. Berlin: Akademie-Verlag, Berlin, 1989.

    Google Scholar 

  16. K. Gürlebeck and W. Sprößig. Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Aug. 1997.

    Google Scholar 

  17. E. Hitzer. Quaternion Fourier transform on quaternion fields and generalizations. Advances in Applied Clifford Algebras, 17(3):497–517, May 2007.

    Article  MathSciNet  MATH  Google Scholar 

  18. E.M.S. Hitzer and B. Mawardi. Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n = 2(mod 4) and n = 3(mod4). Advances in Applied Clifford Algebras, 18(3–4):715–736, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  19. V.V. Kravchenko. Applied Quaternionic Analysis, volume 28 of Research and Exposition in Mathematics. Heldermann Verlag, Lemgo, Germany, 2003.

    Google Scholar 

  20. B. Mawardi. Generalized Fourier transform in Clifford algebra Cℓ 0,3. Far East Journal of Mathematical Sciences, 44(2):143–154, 2010.

    MathSciNet  MATH  Google Scholar 

  21. B. Mawardi, E. Hitzer, A. Hayashi, and R. Ashino. An uncertainty principle for quaternion Fourier transform. Computers and Mathematics with Applications, 56(9):2411–2417, 2008.

    Article  MathSciNet  Google Scholar 

  22. B. Mawardi and E.M.S. Hitzer. Clifford Fourier transformation and uncertainty principle for the Clifford algebra Cℓ 3,0. Advances in Applied Clifford Algebras, 16(1):41– 61, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  23. S.-C. Pei, J.-J. Ding, and J.-H. Chang. Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT. IEEE Transactions on Signal Processing, 49(11):2783–2797, Nov. 2001.

    Article  MathSciNet  Google Scholar 

  24. M. Shapiro and N.L. Vasilevski. Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems I. ψ-hyperholomorphic function theory. Complex Variables, Theory and Application, 27(1):17–46, 1995.

    Google Scholar 

  25. M. Shapiro and N.L. Vasilevski. Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems II. Algebras of singular integral operators and Riemann type boundary value problems. Complex Variables, Theory Appl., 27(1):67–96, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Georgiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Georgiev, S., Morais, J., Kou, K.I., Sprößig, W. (2013). Bochner–Minlos Theorem and Quaternion Fourier Transform. In: Hitzer, E., Sangwine, S. (eds) Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0603-9_6

Download citation

Publish with us

Policies and ethics