Skip to main content

Bochner’s Theorems in the Framework of Quaternion Analysis

  • Chapter
  • First Online:
Quaternion and Clifford Fourier Transforms and Wavelets

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let σ(x) be a nondecreasing function, such that σ(-∞) = 0,σ(-∞) = 1 a nd let us denote by B the class of functions which can be represented by a Fourier–Stieltjes integral \(f(t)=\int^\infty_{-\infty}\;e^{itx}d\sigma(x)\). The purpose of this chapter is to give a characterization of the class B and to give a generalization of the classical theorem of Bochner in the framework of quaternion analysis.

Mathematics Subject Classification (2010). Primary 30G35; secondary 42A38.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bochner. Monotone funktionen, Stieltjessche integrate, und harmonische analyse. Mathematische Annalen, 108:378–410, 1933.

    Article  MathSciNet  Google Scholar 

  2. S. Bochner. Lectures on Fourier Integrals. Princeton University Press, Princeton, New Jersey, 1959.

    Google Scholar 

  3. T. Bülow. Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images. PhD thesis, University of Kiel, Germany, Institut für Informatik und Praktische Mathematik, Aug. 1999.

    Google Scholar 

  4. T. Bülow, M. Felsberg, and G. Sommer. Non-commutative hypercomplex Fourier transforms of multidimensional signals. In G. Sommer, editor, Geometric computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics, pages 187–207, Berlin, 2001. Springer.

    Google Scholar 

  5. S. Georgiev, J. Morais, K.I. Kou, and W. Sprößig. Bochner–Minlos theorem and quaternion Fourier transform. To appear.

    Google Scholar 

  6. B. Mawardi, E. Hitzer, A. Hayashi, and R. Ashino. An uncertainty principle for quaternion Fourier transform. Computers and Mathematics with Applications, 56(9):2411– 2417, 2008.

    Article  MathSciNet  Google Scholar 

  7. B. Mawardi and E.M.S. Hitzer. Clifford Fourier transformation and uncertainty principle for the Clifford algebra Cℓ 3,0. Advances in Applied Clifford Algebras, 16(1):41–61, 2006.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Georgiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Georgiev, S., Morais, J. (2013). Bochner’s Theorems in the Framework of Quaternion Analysis. In: Hitzer, E., Sangwine, S. (eds) Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0603-9_5

Download citation

Publish with us

Policies and ethics