Vectorial Spherical Harmonics in \({\mathbb{R}}^{3}\)

  • Willi Freeden
  • Martin Gutting
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Various applications imply different formulations of vector spherical harmonics, putting the accent on different issues (see, e.g., Sects. 1.3 and1.4). One important aspect in our understanding is the easy transition from scalar spherical harmonics to the vectorial ones. A simple approach is to formulate the vectorial problem in terms of Cartesian components. However, this procedure leads back to anisotropic scalar component equations, so that the physical relevance usually is difficult to realize, the mathematical formulation is lengthy, and modeling often becomes complicated.


Vector Field Spherical Harmonic Beltrami Operator Addition Theorem Vector Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abeyratne, M.K., Freeden, W., Mayer, C.: Multiscale deformation analysis by Cauchy-Navier wavelets. J. Appl. Math. 2003(12), 605–645 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1972)zbMATHGoogle Scholar
  3. Anger, G., Gorenflo, R., Jochmann, H., Moritz, H., Webers, W.: Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine. Mathematical Research, vol. 74. Akademie Verlag, Berlin (1993)Google Scholar
  4. Ansorge, R., Sonar, T.: Mathematical Models of Fluid Dynamics. Wiley-VCH, Weinheim (2009)CrossRefGoogle Scholar
  5. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  6. Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Clarendon, Oxford (1983)zbMATHGoogle Scholar
  7. Artin, E.: The Gamma Function. Holt, Rinehart and Winston, New York (1964)zbMATHGoogle Scholar
  8. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics, vol. 2044. Springer, Heidelberg (2012)Google Scholar
  9. Backus, G.E.: Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys. J. R. Astron. Soc. 13, 61–101 (1967)CrossRefGoogle Scholar
  10. Backus, G.E.: Poloidal and toroidal fields in geomagnetic field modelling. Rev. Geophys. 24, 75–109 (1986)MathSciNetCrossRefGoogle Scholar
  11. Backus, G.E., Parker, R., Constable, C.: Foundations of Geomagnetism. Cambridge University Press, Cambridge (1996)Google Scholar
  12. Ballani, L., Engels, J., Grafarend, E.W.: Global base functions for the mass density in the interior of a massive body (Earth). Manuscr. Geod. 18, 99–114 (1993)Google Scholar
  13. Bayer, M., Freeden, W., Maier, T.: A vector wavelet approach in iono- and magnetospheric geomagnetic satellite data. J. Atmos. Sol. Terr. Phys. 63, 581–597 (2001)CrossRefGoogle Scholar
  14. Bauch, H.: Approximationssätze für die Lösung der Grundgleichung der Elastostatik. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1981)Google Scholar
  15. Beatson, R.K., Greengard, L.: A short course on fast multipole methods. In: Light, W., Ainsworth, M., Levesley, J., Marletta, M. (eds.) Wavelets, Multilevel Methods, and Elliptic PDEs, pp. 1–37. Oxford University Press, Oxford (1997)Google Scholar
  16. Benedetto, J.J.: Frame decompositions, sampling, and uncertainty principle inequalities. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications, pp. 247–304. CRC, Boca Raton (1994)Google Scholar
  17. Benedetto, J.J.: Harmonic Analysis and Applications. CRC, Boca Raton (1996)zbMATHGoogle Scholar
  18. Benedetto, J.J., Zayed, A.I. (eds.): Sampling, Wavelets, and Tomography. Birkhäuser, Boston (2004)zbMATHGoogle Scholar
  19. Berman, C.L., Greengard, L.: A renormalization method for the evaluation of lattice sums. J. Math. Phys. 35(11), 6036–6048 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  20. Bessel, F.W.: Untersuchung des Theils der planetarischen Störungen, welcher aus der Bewegung der Sonne entsteht. Berliner Abh, pp. 1–52 (1824)Google Scholar
  21. Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics (Theory and Application). Encyclopedia of Mathematics and Its Applications. Addison-Wesley, Reading (1981)zbMATHGoogle Scholar
  22. Blakely, R.J.: Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge (1996)Google Scholar
  23. Blatt, J., Weisskopf, V.: Theoretical Nuclear Physics. Wiley, New York (1952)zbMATHGoogle Scholar
  24. Borwein, D., Borwein, J.M., Shail, R.: Analysis of certain lattice sums. J. Math. Anal. Appl. 143, 126–137 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  25. Brackx, F., Delanghe, R.: On harmonic potential fields and the structure of monogenic functions. J. Anal. Appl. 22, 261–273 (2003)MathSciNetzbMATHGoogle Scholar
  26. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman, Boston (1982)Google Scholar
  27. Braun, M.: Laguerre polynomials and the vibrations of a multiple pendulum. SIAM OP-SF Newsl. 7(3), 17–20 (1997)Google Scholar
  28. Brink, D.M., Satchler, G.R.: Angular Momentum. Oxford Library of the Physical Sciences. Clarendon, Oxford (1968)Google Scholar
  29. Butzer, P.L., Nessel, R.: Fourier Analysis and Approximation Theory. Birkhäuser, Basel (1971)zbMATHCrossRefGoogle Scholar
  30. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin/Heidelberg/ New York (1968)Google Scholar
  31. Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  32. Cherrie, J.B., Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions: methods for generalised multiquadrics in \({\mathbb{R}}^{n}\). SIAM J. Sci. Comput. 23(5), 1549–1571 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  33. Choi, C.H., Ivanic, J., Gordon, M.S., Ruedenberg, K.: Rapid and staple determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys. 111(19), 8825–8831 (1999)CrossRefGoogle Scholar
  34. Ciarlet, P.G.: Mathematical Elasticity: Volume I: Three-Dimensional Elasticity. Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1994)Google Scholar
  35. Clenshaw, C.W.: A note on the summation of Chebyshev series. Math. Table Wash. 9, 118–120 (1955)MathSciNetzbMATHGoogle Scholar
  36. Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1, 350–358 (1878)MathSciNetCrossRefGoogle Scholar
  37. Cohen, L.: Time Frequency Analysis: Theory and Applications. Prentice Hall, Englewood Cliffs (1995)Google Scholar
  38. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 93, 2nd edn. Springer, Berlin/Heidelberg/New York (1998)Google Scholar
  39. Cooley, J.W., Tukey, O.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  40. Courant, R., Hilbert, D.: Methoden der Mathematischen Physik I, II, 2nd edn. Springer, Berlin (1968)Google Scholar
  41. Cui, J., Freeden, W.: Equidistribution on the sphere. SIAM J. Sci. Stat. Comput. 18(2), 595–609 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  42. Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, Waltham (1963)zbMATHGoogle Scholar
  43. Davis, P.J., Rabinowitz, P.: Numerical Integration. Blaisdell, Toronto/London (1967)zbMATHGoogle Scholar
  44. De Bie, H., Sommen, F.: Spherical harmonics and integration in superspace. J. Phys. A 40(26), 7193–7212 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  45. De Bie, H., Eelbode, D., Sommen, F.: Spherical harmonics and integration in superspace: II. J. Phys. A 42(24), 245204 (2009)MathSciNetCrossRefGoogle Scholar
  46. Delanghe, R.: On regular-analytic functions with values in a Clifford algebra. Math. Ann. 185, 91–111 (1970)MathSciNetCrossRefGoogle Scholar
  47. Delanghe, R.: Clifford analysis: history and perspective. Comput. Method Funct. Theory 1, 107–153 (2001)MathSciNetzbMATHGoogle Scholar
  48. Deuflhard, P.: On algorithms for the summation of certain special functions. Computing 17, 37–48 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  49. Deuflhard, P., Hohmann, A.: Numerische Mathematik. de Gruyter, Berlin/New York (1991)Google Scholar
  50. Dressler, A.: Über die ungleichförmige Verteilung von Gitterpunkten in ebenen Bereichen. Math. Nachr. 52, 1–20 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  51. Dufour, H.M.: Fonctions Orthogonales dans la Sphère—Résolution Théoretique du Problème du Potentiel Terrestre. B. Geod. 51, 227–237 (1977)CrossRefGoogle Scholar
  52. Edmonds, A.R.: Drehimpulse in der Quantenmechanik. Bibliographisches Institut, Mannheim (1964)Google Scholar
  53. Engl, H.W., Louis, A.K., Rundell, W. (eds.): Inverse Problems in Geophysical Applications. SIAM, Philadelphia (1997)zbMATHGoogle Scholar
  54. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (2000)Google Scholar
  55. Epstein, P.S.: Zur Theorie allgemeiner Zetafunktionen I. Math. Ann. 56, 615–644 (1903)MathSciNetzbMATHCrossRefGoogle Scholar
  56. Epstein, P.S.: Zur Theorie allgemeiner Zetafunktionen II. Math. Ann. 63, 205–216 (1907)zbMATHCrossRefGoogle Scholar
  57. Epton, M.A., Dembart, B.: Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16(4), 865–897 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  58. Erdös, P., Gruber, M., Hammer, J.: Lattice Points. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 39. Longman Scientific-Technical/Wiley, New York (1989)Google Scholar
  59. Euler, L.: Methodus universalis serierum convergentium summas quam proxime inveniendi. Commentarii Academiae Scientiarum Petropolitanae 8, 3–9, Opera Omnia (XIV), 101–107 (1736a)Google Scholar
  60. Euler, L.: Methodus universalis series summandi ulterius promota. Commentarii Academiae Scientarium Petropolitanae 8, 147–158; Opera Omnia (XIV): 124–137 (1736b)Google Scholar
  61. Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, 3rd edn. Wiley, New York (2000)zbMATHGoogle Scholar
  62. Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64, 253–287 (1921)zbMATHCrossRefGoogle Scholar
  63. Fengler, M.J.: Vector spherical harmonic and vector wavelet based non-linear Galerkin schemes for solving the incompressible Navier–Stokes equation on the sphere. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 2005Google Scholar
  64. Fengler, M.J., Freeden, W.: A non-linear Galerkin scheme involving vector and tensor spherical Harmonics for solving the incompressible Navier–Stokes equation on the sphere. SIAM J. Sci. Comput. 27, 967–994 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  65. Fengler, M.J., Freeden, W., Gutting M.: Darstellung des Gravitationsfelds und seiner Funktionale mit Multiskalentechniken. Zeitschrift für Geodäsie, Geoinformation und Landmanagement (ZfV) 129(5), 323–334 (2004)Google Scholar
  66. Fengler, M.J., Freeden, W., Gutting, M.: The spherical Bernstein wavelet. Int. J. Pure Appl. Math. 31(2), 209–230 (2006)MathSciNetzbMATHGoogle Scholar
  67. Freeden, W.: Über eine Klasse von Integralformeln der Mathematischen Geodäsie. Veröffentlichung des Geodätischen Instituts der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen, vol. 27. Aachen (1979)Google Scholar
  68. Freeden, W.: On integral formulas of the (unit) sphere and their application to numerical computation of integrals. Computing 25, 131–146 (1980a)MathSciNetzbMATHCrossRefGoogle Scholar
  69. Freeden, W.: Über die Gaußsche Methode zur angenäherten Berechnung von Integralen. Math. Method Appl. Sci. 2, 397–409 (1980b)MathSciNetzbMATHCrossRefGoogle Scholar
  70. Freeden, W.: On spherical spline interpolation and approximation. Math. Method Appl. Sci. 3, 551–575 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  71. Freeden, W.: Multidimensional Euler summation formulas and numerical cubature. Int. Ser. Num. Monogr. 57, 77–88 (1982)Google Scholar
  72. Freeden, W.: Spherical spline interpolation: basic theory and computational aspects. J. Comput. Appl. Math. 11, 367–375 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  73. Freeden, W.: Interpolation by multidimensional periodic splines. J. Approx. Theory 55, 104–117 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  74. Freeden, W.: Some applications of approximation theory to the first boundary value problem of elastostatics. Int. Ser. Num. Monogr. 94, 121–129 (1990)MathSciNetGoogle Scholar
  75. Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Leipzig (1999)zbMATHGoogle Scholar
  76. Freeden, W.: Metaharmonic Lattice Point Theory. Chapman & Hall/CRC, Boca Raton (2011)zbMATHGoogle Scholar
  77. Freeden, W., Fleck, J.: Numerical integration by means of adapted Euler summation formulas. Numer. Math. 51, 37–64 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  78. Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman & Hall/CRC, Boca Raton (2012)Google Scholar
  79. Freeden, W., Gutting, M.: On the completeness and closure of vector and tensor spherical harmonics. Integral Transform. Spec. Funct. 19, 713–734 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  80. Freeden, W., Hermann, P.: Uniform approximation by spherical spline interpolation. Math. Z. 193, 265–275 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  81. Freeden, W., Hesse, K.: On the multiscale solution of satellite problems by use of locally supported kernel functions corresponding to equidistributed data on spherical orbits. Stud. Sci. Math. Hung. 39, 37–74 (2002)MathSciNetzbMATHGoogle Scholar
  82. Freeden, W., Michel, V.: Multiscale Potential Theory (with Applications to Geoscience). Birkhäuser, Boston/Basel/Berlin (2004)zbMATHCrossRefGoogle Scholar
  83. Freeden, W., Michel, V.: Wavelet deformation analysis for spherical bodies. Int. J. Wavelet Multi. 3, 523–558 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  84. Freeden, W., Nutz, H.: Satellite gravity gradiometry as tensorial inverse problem. Int. J. Geomath. 2, 177–218 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  85. Freeden, W., Reuter, R.: A class of multidimensional periodic splines. Manuscr. Math. 35, 371–386 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  86. Freeden, W., Reuter, R.: Remainder terms in numerical integration formulas of the sphere. Int. Ser. Num. Monogr. 61, 151–170 (1982)MathSciNetGoogle Scholar
  87. Freeden, W., Reuter, R.: Exact computation of spherical harmonics. Computing 32, 365–378 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  88. Freeden, W., Reuter, R.: An efficient algorithm for the generation of homogeneous harmonic polynomials. In: Cox, M.G., Mason, J.C. (eds.) Scientific Software Systems, pp. 166–180. Chapman & Hall, London (1990)CrossRefGoogle Scholar
  89. Freeden, W., Schreiner, M.: Multiresolution analysis by spherical up functions. Constr. Approx. 23, 241–259 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  90. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences, A Scalar, Vectorial, and Tensorial Setup. Springer, Berlin/Heidelberg (2009)zbMATHGoogle Scholar
  91. Freeden, W., Gervens, T., Mason, J.C.: A minimum norm interpolation method for determining the displacement field of a homogeneous isotropic elastic body from discrete data. IMA J. Appl. Math. 44, 55–76 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  92. Freeden, W., Schreiner, M., Franke, R.: A survey on spherical spline approximation. Surv. Math. Ind. 7, 29–85 (1997)MathSciNetzbMATHGoogle Scholar
  93. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (with Applications to Geomathematics). Oxford Science Publications/Clarendon, Oxford (1998)zbMATHGoogle Scholar
  94. Freeden, W., Nashed, M.Z., Sonar, T. (eds.): Handbook of Geomathematics, vol. 1 + 2. Springer, Berlin/Heidelberg (2010)Google Scholar
  95. Freund, R.W., Hoppe, R.H.W.: Stoer/Bulirsch: Numerische Mathematik 1, 10th edn. Springer, Berlin/Heidelberg (2007)zbMATHGoogle Scholar
  96. Fricker, F.: Geschichte des Kreisproblems. Mitt. Math. Sem. Giessen 111, 1–34 (1975)MathSciNetGoogle Scholar
  97. Fricker, F.: Einführung in die Gitterpunktlehre. Birkhäuser, Basel (1982)zbMATHCrossRefGoogle Scholar
  98. Funk, H.: Beiträge zur Theorie der Kugelfunktionen. Math. Ann. 77, 136–152 (1916)MathSciNetCrossRefGoogle Scholar
  99. Gauß, C.F.: Disquisitiones Arithmetica. Leipzig (1801)Google Scholar
  100. Gauß, C.F.: De nexu inter multitudinem classicum, in quas formae binariae secondi grauds distribuuntur, earumque determinantem. Werke 2, 269–291 (1826)Google Scholar
  101. Gautschi, W.: Orthogonal Polynomials, Computation and Approximation. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  102. Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2011)Google Scholar
  103. Gervens, T.: Vektorkugelfunktionen mit Anwendungen in der Theorie der elastischen Verformungen für die Kugel. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1989)Google Scholar
  104. Gill, A.E.: Atmosphere-Ocean Dynamics. Academic, New York (1982)Google Scholar
  105. Górski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M., Bartelmann, M.: HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005)CrossRefGoogle Scholar
  106. Grafarend, E.W.: Three-dimensional deformation analysis: global vector spherical harmonic and local finite element representation. Tectonophysics 130, 337–359 (1986)CrossRefGoogle Scholar
  107. Grafarend, E.W., Klapp, M., Martinec, Z.: Spacetime modeling of the Earth’s gravity field by ellipsoidal harmonics. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, pp. 159–252. Springer, Berlin/Heidelberg (2010)CrossRefGoogle Scholar
  108. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT, Cambridge (1988)zbMATHGoogle Scholar
  109. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(1), 325–348 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  110. Greengard, L., Rokhlin, V.: Rapid Evaluation of Potential Fields in Three Dimensions. In: Anderson, C., Greengard, L. (eds.) Vortex Methods, pp. 121–141. Springer, Berlin (1988)CrossRefGoogle Scholar
  111. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)MathSciNetCrossRefGoogle Scholar
  112. Greville, T.N.E.: Introduction to spline functions. In: Greville, T.N.E. (ed.) Theory and Applications of Spline Functions, pp. 1–35. Academic, New York (1969)Google Scholar
  113. Groten, E.: Geodesy and the Earth’s Gravity Field, vol. I and II. Dümmler, Bonn (1979)Google Scholar
  114. Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Mathematical Research, vol. 56. Akademie Verlag, Berlin (1989)Google Scholar
  115. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser, Basel/Boston/Berlin (2008)Google Scholar
  116. Gurtin, M.E.: The Linear Theory of Elasticity. Handbuch der Physik, vol. 6, 2nd edn. Springer, Heidelberg (1972)Google Scholar
  117. Gutting, M.: Fast multipole methods for oblique derivative problems. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen (2008)Google Scholar
  118. Gutting, M.: Fast multipole accelerated solution of the oblique derivative boundary value problem. Int. J. Geomath. 3(2), 223–252 (2012)zbMATHCrossRefGoogle Scholar
  119. Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69, 331–371 (1910)MathSciNetzbMATHCrossRefGoogle Scholar
  120. Hämmerlin, G., Hoffmann, K.-H.: Numerische Mathematik. Springer, Berlin/Heidelberg/ New York (1992)zbMATHCrossRefGoogle Scholar
  121. Hamilton, W.R.: Elements of Quaternions. Longmans Green, London (1866)Google Scholar
  122. Hardy, G.H.: On the expression of a number as the sum of two squares. Q. J. Math. (Oxford) 46, 263–283 (1915)Google Scholar
  123. Hardy, G.H., Landau, E.: The lattice points of a circle. Proc. R. Soc. A 105, 244–258 (1924)zbMATHCrossRefGoogle Scholar
  124. Hartman, P., Wilcox, C.: On solutions of the Helmholtz equation in exterior domains. Math. Z. 75, 228–255 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  125. Hecke, E.: Über orthogonal-invariante Integralgleichungen. Math. Ann. 78, 398–404 (1918)MathSciNetCrossRefGoogle Scholar
  126. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. A Hadron. Nucl. 43(3), 172–198 (1927)zbMATHGoogle Scholar
  127. Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)Google Scholar
  128. Helms, L.L.: Introduction to Potential Theory. Wiley-Interscience, New York (1969)zbMATHGoogle Scholar
  129. Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 1187–1220. Springer, Berlin/Heidelberg (2010)Google Scholar
  130. Hielscher, R., Mainprice, D., Schaeben, H.: Material behavior: texture and anisotropy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 973–1003. Springer, Berlin/Heidelberg (2010)CrossRefGoogle Scholar
  131. Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner, Leipzig (1912)zbMATHGoogle Scholar
  132. Hill, E.H.: The theory of vector spherical harmonics. Am. J. Phys. 22, 211–214 (1954)zbMATHCrossRefGoogle Scholar
  133. Hlawka, E.: Gleichverteilung auf Produkten von Sphären. J. Reine Angew. Math. 330, 1–43 (1982)MathSciNetzbMATHGoogle Scholar
  134. Hlawka, E.: Näherungslösungen der Wellengleichung und verwandter Gleichungen durch zahlentheoretische Methoden. Öst. Akad. Wiss. Sber. II 193(8–10), 359–442 (1984)MathSciNetzbMATHGoogle Scholar
  135. Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Reprint Chelsea Publishing Company, New York (1955)Google Scholar
  136. Hochstadt, H.: The Functions of Mathematical Physics. Wiley-Intersciences, New York (1971)zbMATHGoogle Scholar
  137. Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Vienna/New York (2005)Google Scholar
  138. Ivanow, V.K.: Higher-dimensional generalization of the Euler summation formula (Russian). Izv. Vuz. Mat. 6(37), 72–80 (1963)Google Scholar
  139. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)Google Scholar
  140. James, R.W.: The Adams and Elsasser dynamo integrals. Proc. R. Soc. Lond. A 331, 469 (1973)CrossRefGoogle Scholar
  141. James, R.W.: The spectral form of the magnetic induction equation. Proc. R. Soc. Lond. A 340, 287 (1974)CrossRefGoogle Scholar
  142. James, R.W.: New tensor spherical harmonics, for application to the partial differential equations of mathematical physics. Philos. Trans. R. Soc. Lond. A 281, 195–221 (1976)zbMATHCrossRefGoogle Scholar
  143. Jänich, K.: Vektoranalysis, 5th edn. Springer, Berlin/Heidelberg (2004)Google Scholar
  144. Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics. Academic, London (1977)zbMATHGoogle Scholar
  145. Jones, N.M.: Spherical Harmonics and Tensors for Classical Field Theory. Research Studies Press/Wiley, New York (1985)zbMATHGoogle Scholar
  146. Kaula, W.M.: Theory of Satellite Geodesy. Blaisdell Company, Waltham (1966)Google Scholar
  147. Kellogg, O.D.: Foundations of Potential Theory. Frederick Ungar Publishing Company, New York (1929)Google Scholar
  148. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)zbMATHCrossRefGoogle Scholar
  149. Knopp, K.: Funktionentheorie II. Sammlung Göschen, Bd. 703. Walter de Gruyter & Co, Berlin (1971)Google Scholar
  150. Knops, R.J., Payne, L.E.: Uniqueness Theorems in Linear Elasticity. Springer, Berlin (1971)zbMATHCrossRefGoogle Scholar
  151. Kotsiaris, S., Olsen, N.: The geomagnetic field gradient tensor. Int. J. Geomath. 3(2), 297–314 (2012)CrossRefGoogle Scholar
  152. Krätzel, E.: Lattice Points. Kluwer Academic, Dordrecht/Boston/London (1988)zbMATHGoogle Scholar
  153. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)zbMATHGoogle Scholar
  154. Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program for Scientific Translations, Jerusalem (1965)zbMATHGoogle Scholar
  155. Lai, M., Krempl, E., Ruben, D.: Introduction to Continuum Mechanics, 4th edn. Elsevier, Amsterdam (2010)Google Scholar
  156. Laín Fernández, N., Prestin, J.: Localization of the spherical Gauß-Weierstrass kernel. In: Bojanov, B.D. (ed.) Constructive Theory of Functions, pp. 267–274. DA2BA, Sofia (2003)Google Scholar
  157. Lamp, U., Schleicher, K.-T., Wendland, W.L.: The fast Fourier transform and the numerical solution of one-dimensional boundary integral equations. Numer. Math. 47, 15–38 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  158. Landau, E.: Über die Gitterpunkte in einem Kreise. I. Nachr. v. d. Gesellschaft d. Wiss. zu Göttingen, Math.-Phys. Klasse 148–160 (1915)Google Scholar
  159. Landau, E.: Vorlesungen über Zahlentheorie. Chelsea Publishing Compagny, New York (1969) (reprint from the orignal version published by S. Hirzel, Leipzig (1927))zbMATHGoogle Scholar
  160. Landau, E.: Ausgewählte Abhandlungen zur Gitterlehre. VEB, Berlin (1962)Google Scholar
  161. Landau, L.D., Lifshitz, L.M.: Quantum Mechanics. Course of Theoretical Physics, vol. 3, 3rd edn. Elsevier, Amsterdam (2004)Google Scholar
  162. Lebedev, N.N.: Spezielle Funktionen und ihre Anwendungen. Bibliographisches Institut, Mannheim (1973)Google Scholar
  163. Leis, R.: Vorlesungen über partielle Differentialgleichungen zweiter Ordnung. BI-Hochschultaschenbücher, 165/165a, Bibliographisches Institut, Mannheim (1967)Google Scholar
  164. Lekkerkerker, C.G.: Geometry of Numbers. North Holland, Amsterdam/London (1969)zbMATHGoogle Scholar
  165. Lense, J.: Kugelfunktionen. Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, vol. 23. Akademie Verlagsgesellschaft, Leipzig (1954)Google Scholar
  166. Lesieur, M.: Turbulence in Fluids, Third Revised and Enlarged Edition. Kluwer Academic, Dordrecht/Boston/London (1997)zbMATHCrossRefGoogle Scholar
  167. Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8(6), 535–563 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  168. Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)zbMATHCrossRefGoogle Scholar
  169. Lurje, A.: Räumliche Probleme der Elastizitätstheorie. Akademie Verlag, Berlin (1963)zbMATHGoogle Scholar
  170. Maclaurin, C.: A Treatise of Fluxions. Edinburgh (1742)Google Scholar
  171. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 52, 3rd edn. Springer, Berlin (1966)Google Scholar
  172. Maier, T.: Multiscale geomagnetic field modedlling from satellite data. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2003)Google Scholar
  173. Maier, T.: Wavelet Mie representations for solenoidal fields with applications to ionospheric geomagnetic data. SIAM J. Appl. Math. 65(6), 1888–1912 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  174. Marion, M., Teman, R.: Non-linear Galerkin methods. SIAM J. Numer. Anal. 26(5), 1139–1157 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  175. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1994)Google Scholar
  176. Martensen, E.: Potentialtheorie. Leitfäden der Angewandten Mathematik und Mechanik, Bd. 12. Teubner, Leipzig (1968)Google Scholar
  177. Mayer, C.: Wavelet modelling of ionospheric currents and induced magnetic fields from satellite data. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2003)Google Scholar
  178. Messiah, A.: Quantenmechanik. Walter de Gruyter. Berlin/New York (1990)Google Scholar
  179. Michel, V.: A multiscale method for the gravimetry Problem—theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 1999Google Scholar
  180. Michel, V.: Tomography: Problems and Multiscale Solutions. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 949–972. Springer, Berlin/Heidelberg (2010)CrossRefGoogle Scholar
  181. Michel, V.: Lectures on Constructive Approximation—Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser, Boston (2012)Google Scholar
  182. Michlin, S.G.: Mathematical Physics, an Advanced Course. North Holland, Amsterdam/London (1970)Google Scholar
  183. Michlin, S.G.: Lehrgang der Mathematischen Physik, 2nd edn. Akademie Verlag, Berlin (1975)zbMATHGoogle Scholar
  184. Miranda, C.: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970)zbMATHCrossRefGoogle Scholar
  185. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco (1973)Google Scholar
  186. Mochizuki, E.: Spherical harmonic development of an elastic tensor. Geophys. J. Int. 93(3), 521–526 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  187. Moisil, G.C., Teodorescu, N.: Fonctions holomorphes dans l’espace. Mathematica (Cluj) 5, 142–159 (1931)Google Scholar
  188. Mordell, L.J.: Poisson’s summation formula in several variables and some applications to the theory of numbers. Math. Proc. Camb. 25, 412–420 (1928)CrossRefGoogle Scholar
  189. Mordell, L.J.: Poisson’s summation formula and the Riemann Zeta function. J. Lond. Math. Soc. 4, 285–296 (1929)MathSciNetzbMATHCrossRefGoogle Scholar
  190. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)zbMATHGoogle Scholar
  191. Müller, C.: Über die ganzen Lösungen der Wellengleichung (nach einem Vortrag von G. Herglotz). Math. Ann. 124, 235–264 (1952)Google Scholar
  192. Müller, C: Eine Verallgemeinerung der Eulerschen Summenformel und ihre Anwendung auf Fragen der analytischen Zahlentheorie. Abh. Math. Sem. Univ. Hamburg 19, 41–61 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
  193. Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)Google Scholar
  194. Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)zbMATHGoogle Scholar
  195. Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Springer, New York/Berlin/ Heidelberg (1998)zbMATHCrossRefGoogle Scholar
  196. Müller, C., Dressler, A.: Über eine gewichtete Mittelung der Gitterpunkte in der Ebene. J. Reine Angew. Math. 252, 82–87 (1972)MathSciNetzbMATHGoogle Scholar
  197. Nashed, M.Z.: On moment-discretization and least-squares solutions of linear integral equations of the first kind. J. Math. Anal. Appl. 53, 359–366 (1976a)MathSciNetzbMATHCrossRefGoogle Scholar
  198. Nashed, M.Z.: Generalized Inverses and Applications. Academic, New York (1976b)zbMATHGoogle Scholar
  199. Nashed, M.Z., Whaba, G.: Generalized inverses in reproducing kernel spacxes: an approach to regularization of linear operator equations. SIAM J. Math. Anal. 5, 974–987 (1974)MathSciNetCrossRefGoogle Scholar
  200. Nashed, M.Z.: Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory. IEEE Trans. Antenn. Propag. 29, 220–231 (1981)MathSciNetCrossRefGoogle Scholar
  201. Newton, I.: Philosophiæ Naturalis Principia Mathematica, vol. 3, De Munde Systemate (1687)Google Scholar
  202. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Method. SIAM, Philadelphia (1992)CrossRefGoogle Scholar
  203. Nielsen, N.: Handbuch der Theorie der Gammafunktion. Teubner, Leipzig (1906)Google Scholar
  204. Niemeyer, H.: Lokale und asympotische Eigenschaften der Lösung der Helmholtzschen Schwingungsgleichung. Jahresbericht d. DMV 65, 1–44 (1962)MathSciNetzbMATHGoogle Scholar
  205. Nijboer, B.R.A., de Wette, F.W.: On the calculation of lattice sums. Physica 23, 309–321 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  206. Norbury, J., Roulstone, I.: Large-Scale Atmospere-Ocean Dynamics I. Analytic Methods and Numerical Methods. Cambridge University Press, Cambridge (2002a)CrossRefGoogle Scholar
  207. Norbury, J., Roulstone, I.: Large-Scale Atmospere-Ocean Dynamics II, Geometric Methods and Models. Cambridge University Press, Cambridge (2002b)CrossRefGoogle Scholar
  208. Nutz, H.: A unified setup of gravitational field observables. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 2002Google Scholar
  209. Ostermann, I.: Modeling heat transport in deep geothermal systems by radial basis functions. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2011)Google Scholar
  210. Pail, R., Plank, G.: Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J. Geod. 76, 462–474 (2002)zbMATHCrossRefGoogle Scholar
  211. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill, New York (2002)Google Scholar
  212. Pedlowsky, J.: Geophysical Fluid Dynamics. Springer, New York/Heidelberg/Berlin (1979)CrossRefGoogle Scholar
  213. Qian, T., Hempfling, T., McIntosh, A., Sommen, F. (eds.): Advances in Analysis and Geometry: New Developments Using Clifford Algebras. Trends in Mathematics. Birkhäuser, Basel (2004)zbMATHGoogle Scholar
  214. Rademacher, H.: Topics in Analytic Number Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 169. Springer, Berlin/Heidelberg/New York (1973)Google Scholar
  215. Rakhmanov, E.A., Saff, E.B., Zhou Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)MathSciNetzbMATHGoogle Scholar
  216. Reed, M., Simon, B.: Functional Analysis I. Academic, New York (1972)Google Scholar
  217. Reuter, R.: Über Integralformeln der Einheitssphäre und harmonische Splinefunktionen. Ph.D. thesis, Veröff. Geod. Inst. RWTH Aachen, Report No. 33, 1982Google Scholar
  218. Richter, L.: Über die Inversion einer Legendreschen Integraltransformation und ihre Anwendung. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, 1971Google Scholar
  219. Rieder, A.: Keine Probleme mit inversen Problemen. Vieweg, Wiesbaden (2003)zbMATHCrossRefGoogle Scholar
  220. Rivlin, T.J.: Chebychev Polynomials, 2nd edn. Wiley, New York (1990)Google Scholar
  221. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  222. Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York/London/Sydney (1957)zbMATHGoogle Scholar
  223. Rudin, W.: Functional Analysis. McGraw-Hill, Boston (1991)zbMATHGoogle Scholar
  224. Rummel, R., van Gelderen, M.: Spectral analysis of the full gravity tensor. Geophys. J. Int. 111, 159–169 (1992)CrossRefGoogle Scholar
  225. Rvachev, V.A.: Compactly supported solutions of functional-differential equations and their applications. Russ. Math. Surv. 45, 87–120 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  226. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  227. Sard, A.: Best approximate integration formulas. Am. J. Math. 71, 80–91 (1949)MathSciNetzbMATHCrossRefGoogle Scholar
  228. Sauter, S.A.: Der Aufwand der Panel-Clustering-Methode für Integralgleichungen. Technical Report 9115, Institute for Computer Science and Applied Mathematics, University of Kiel (1991)Google Scholar
  229. Schaeben, H., van den Boogaart, K.G.: Spherical harmonics in texture analysis. Tectonophysics 370, 253–268 (2003)CrossRefGoogle Scholar
  230. Schmidt, K.E., Lee, M.A.: Implementing the fast multipole method in three dimensions. J. Stat. Phys. 63 1223–1235 (1991)CrossRefGoogle Scholar
  231. Schoenberg, I.J.: On trigonometric spline interpolation. J. Math. Mech. 13, 795–825 (1964)MathSciNetzbMATHGoogle Scholar
  232. Schreiner, M.: Tensor spherical harmonics and their application in satellite gradiometry. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (1994)Google Scholar
  233. Schulten, K., Gordon, R.G.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum-mechanical coupling of angular momentum. J. Math. Phys. 16(10), 1961–1970 (1975)MathSciNetCrossRefGoogle Scholar
  234. Schulten, K., Gordon, R.G.: Recursive evaluation of 3j and 6j coefficients. Comput. Phys. Commun. 11, 269–278 (1976)CrossRefGoogle Scholar
  235. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)zbMATHGoogle Scholar
  236. Shore, B.W., Menzel, D.H.: Principles of Atomic Spectra. Wiley, New York/London/Sydney (1968)Google Scholar
  237. Sieber, N., Sebastian, H.-J.: Spezielle Funktionen, 3rd edn. B.G. Teubner, Leipzig (1988)zbMATHGoogle Scholar
  238. Sneddon, I.N.: Special Functions of Mathematical Physics and Chemistry, 3rd edn. Longman, New York (1980)zbMATHGoogle Scholar
  239. Sneeuw, N.: A semi-analytical approach to gravity field analysis from satellite observations. Ph.D. thesis, TU Munich, Deutsche Geodätische Kommission, Reihe A, 527 (2000)Google Scholar
  240. Sommerfeld, A.: Partielle Differentialgleichnugen der Physik, 6th edn. Akademische Verlagsgesellschaft, Leipzig (1966)Google Scholar
  241. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)zbMATHGoogle Scholar
  242. Strubecker, K.: Differentialgeometrie I, II. Sammlung Göschen, de Gruyter, Berlin (1964)Google Scholar
  243. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Rhode Island (1967)Google Scholar
  244. Teman, R.: Navier–Stokes Equations: Theory and Numerical Analyis. North-Holland, Amsterdam/Newyork/Oxford (1979)Google Scholar
  245. Teman, R.: Navier–Stokes Equations and Non-Linear Functional Analysis. SIAM, Philadelphia (1983)Google Scholar
  246. Thomson, K.: Generalized Spiral Points: Further Improvement. (2007). Cited 17 Jul 2012.
  247. Tichy, R.F.: Ein Approximationsverfahren zur Lösung spezieller partieller Differentialgleichungen. ZAMM. 68, 187–188 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  248. Tichy, R.F.: Random points in the cube and on the sphere with applications to numerical analysis. J. Comput. Appl. Math. 31(1), 191–197 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  249. Titchmarsh, E.C.: The Theory of Riemann Zeta-Function. Clarendon, Oxford (1951)zbMATHGoogle Scholar
  250. Torge, W.: Geodesy, 3rd edn. de Gruyter, Berlin (2001)Google Scholar
  251. Tscherning, C.C.: Computation of the second-order derivatives of the normal potential based on the representation by a Legendre series. Manusc. Geodaet. 1, 71–92 (1976)Google Scholar
  252. Tscherning, C.C.: Isotropic reproducing kernels for the inner of a sphere or spherical shell and their use as density covariance functions. Math. Geol. 28, 161–168 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  253. van der Corput, B.L.: Verteilungsfunktionen I. Proc. Nederl. Akad. Wetensch. 38, 813–821 (1935a)Google Scholar
  254. van der Corput, B.L.: Verteilungsfunktionen II. Proc. Nederl. Akad. Wetensch. 38, 1058–1066 (1935b)Google Scholar
  255. van der Waerden, B.L.: Mathematical Statistics. Springer, Heidelberg (1969)zbMATHGoogle Scholar
  256. Vars̆alovic̆, D.A., Moskalev, A.N., Chersonskij, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)Google Scholar
  257. Vilenkin, N.J.: Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, vol. 22. American Mathematical Society, Providence (1968)Google Scholar
  258. Wahba, G.: Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat. Comp. 2, 5–16 (1981) (also errata: SIAM J. Sci. Stat. Comp. 3, 385–386 (1982))Google Scholar
  259. Walfisz, A.: Gitterpunkte in mehrdimensionalen Kugeln. Acta Arith. 6, 115–136, 193–215 (1960)MathSciNetGoogle Scholar
  260. Wangerin, A.: Theorie des Potentials und der Kugelfunktionen (I,II). de Gruyter, Leipzig (1921)Google Scholar
  261. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)zbMATHGoogle Scholar
  262. Weyl, H.: The Theory of Groups and Quantum Mechanics. E.P. Dutton, New York (1931)zbMATHGoogle Scholar
  263. Wienholtz, E., Kalf, H., Kriecherbauer, T.: Elliptische Differentialgleichungen zweiter Ordnung. Springer, Heidelberg (2009)zbMATHCrossRefGoogle Scholar
  264. Wienkamp, R.: Über eine Klasse verallgemeinerter Zetafunktionen. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1958)Google Scholar
  265. White, C.A., Head-Gordon, M.: Rotating around the quartic angular momentum barrier in fast multipole method calculations. J. Chem. Phys. 105(12), 5061–5067 (1996)CrossRefGoogle Scholar
  266. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1948)Google Scholar
  267. Xu, C., Sneeuw, N., Sideris, M.G.: The torus approach in spaceborne gravimetry. In: Xu, P., Liu, J., Dermanis, A. (eds.) IAG Symposium, vol. 132, pp. 23–28. Springer, Heidelberg (2008)Google Scholar
  268. Yoshida, K.: Functional Analysis. Springer, Berlin (1980)CrossRefGoogle Scholar
  269. Zare, R.N.: Angular Momentum. Wiley-Interscience, New York (1988)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Willi Freeden
    • 1
  • Martin Gutting
    • 1
  1. 1.Geomathematics GroupUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations