Skip to main content

Orthogonal Polynomials

  • Chapter
  • First Online:
Book cover Special Functions of Mathematical (Geo-)Physics

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 2377 Accesses

Abstract

In this chapter, we introduce polynomial function systems that are orthogonal with respect to a scalar product characterized by a measure \(\mathrm{d} \uplambda\). We start with some very general results from Fourier analysis (see, e.g., Davis 1963; Reed and Simon 1972; Rudin 1991; Yoshida 1980), before we begin to specifically consider polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeyratne, M.K., Freeden, W., Mayer, C.: Multiscale deformation analysis by Cauchy-Navier wavelets. J. Appl. Math. 2003(12), 605–645 (2003)

    MathSciNet  MATH  Google Scholar 

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1972)

    MATH  Google Scholar 

  • Anger, G., Gorenflo, R., Jochmann, H., Moritz, H., Webers, W.: Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine. Mathematical Research, vol. 74. Akademie Verlag, Berlin (1993)

    Google Scholar 

  • Ansorge, R., Sonar, T.: Mathematical Models of Fluid Dynamics. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  • Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    MathSciNet  MATH  Google Scholar 

  • Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Clarendon, Oxford (1983)

    MATH  Google Scholar 

  • Artin, E.: The Gamma Function. Holt, Rinehart and Winston, New York (1964)

    MATH  Google Scholar 

  • Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics, vol. 2044. Springer, Heidelberg (2012)

    Google Scholar 

  • Backus, G.E.: Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys. J. R. Astron. Soc. 13, 61–101 (1967)

    Google Scholar 

  • Backus, G.E.: Poloidal and toroidal fields in geomagnetic field modelling. Rev. Geophys. 24, 75–109 (1986)

    MathSciNet  Google Scholar 

  • Backus, G.E., Parker, R., Constable, C.: Foundations of Geomagnetism. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  • Ballani, L., Engels, J., Grafarend, E.W.: Global base functions for the mass density in the interior of a massive body (Earth). Manuscr. Geod. 18, 99–114 (1993)

    Google Scholar 

  • Bayer, M., Freeden, W., Maier, T.: A vector wavelet approach in iono- and magnetospheric geomagnetic satellite data. J. Atmos. Sol. Terr. Phys. 63, 581–597 (2001)

    Google Scholar 

  • Bauch, H.: Approximationssätze für die Lösung der Grundgleichung der Elastostatik. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1981)

    Google Scholar 

  • Beatson, R.K., Greengard, L.: A short course on fast multipole methods. In: Light, W., Ainsworth, M., Levesley, J., Marletta, M. (eds.) Wavelets, Multilevel Methods, and Elliptic PDEs, pp. 1–37. Oxford University Press, Oxford (1997)

    Google Scholar 

  • Benedetto, J.J.: Frame decompositions, sampling, and uncertainty principle inequalities. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications, pp. 247–304. CRC, Boca Raton (1994)

    Google Scholar 

  • Benedetto, J.J.: Harmonic Analysis and Applications. CRC, Boca Raton (1996)

    MATH  Google Scholar 

  • Benedetto, J.J., Zayed, A.I. (eds.): Sampling, Wavelets, and Tomography. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  • Berman, C.L., Greengard, L.: A renormalization method for the evaluation of lattice sums. J. Math. Phys. 35(11), 6036–6048 (1994)

    MathSciNet  MATH  Google Scholar 

  • Bessel, F.W.: Untersuchung des Theils der planetarischen Störungen, welcher aus der Bewegung der Sonne entsteht. Berliner Abh, pp. 1–52 (1824)

    Google Scholar 

  • Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics (Theory and Application). Encyclopedia of Mathematics and Its Applications. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  • Blakely, R.J.: Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  • Blatt, J., Weisskopf, V.: Theoretical Nuclear Physics. Wiley, New York (1952)

    MATH  Google Scholar 

  • Borwein, D., Borwein, J.M., Shail, R.: Analysis of certain lattice sums. J. Math. Anal. Appl. 143, 126–137 (1989)

    MathSciNet  MATH  Google Scholar 

  • Brackx, F., Delanghe, R.: On harmonic potential fields and the structure of monogenic functions. J. Anal. Appl. 22, 261–273 (2003)

    MathSciNet  MATH  Google Scholar 

  • Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman, Boston (1982)

    Google Scholar 

  • Braun, M.: Laguerre polynomials and the vibrations of a multiple pendulum. SIAM OP-SF Newsl. 7(3), 17–20 (1997)

    Google Scholar 

  • Brink, D.M., Satchler, G.R.: Angular Momentum. Oxford Library of the Physical Sciences. Clarendon, Oxford (1968)

    Google Scholar 

  • Butzer, P.L., Nessel, R.: Fourier Analysis and Approximation Theory. Birkhäuser, Basel (1971)

    MATH  Google Scholar 

  • Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin/Heidelberg/ New York (1968)

    Google Scholar 

  • Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)

    MathSciNet  MATH  Google Scholar 

  • Cherrie, J.B., Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions: methods for generalised multiquadrics in n. SIAM J. Sci. Comput. 23(5), 1549–1571 (2002)

    MathSciNet  MATH  Google Scholar 

  • Choi, C.H., Ivanic, J., Gordon, M.S., Ruedenberg, K.: Rapid and staple determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys. 111(19), 8825–8831 (1999)

    Google Scholar 

  • Ciarlet, P.G.: Mathematical Elasticity: Volume I: Three-Dimensional Elasticity. Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1994)

    Google Scholar 

  • Clenshaw, C.W.: A note on the summation of Chebyshev series. Math. Table Wash. 9, 118–120 (1955)

    MathSciNet  MATH  Google Scholar 

  • Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1, 350–358 (1878)

    MathSciNet  Google Scholar 

  • Cohen, L.: Time Frequency Analysis: Theory and Applications. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  • Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 93, 2nd edn. Springer, Berlin/Heidelberg/New York (1998)

    Google Scholar 

  • Cooley, J.W., Tukey, O.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    MathSciNet  MATH  Google Scholar 

  • Courant, R., Hilbert, D.: Methoden der Mathematischen Physik I, II, 2nd edn. Springer, Berlin (1968)

    Google Scholar 

  • Cui, J., Freeden, W.: Equidistribution on the sphere. SIAM J. Sci. Stat. Comput. 18(2), 595–609 (1997)

    MathSciNet  MATH  Google Scholar 

  • Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, Waltham (1963)

    MATH  Google Scholar 

  • Davis, P.J., Rabinowitz, P.: Numerical Integration. Blaisdell, Toronto/London (1967)

    MATH  Google Scholar 

  • De Bie, H., Sommen, F.: Spherical harmonics and integration in superspace. J. Phys. A 40(26), 7193–7212 (2007)

    MathSciNet  MATH  Google Scholar 

  • De Bie, H., Eelbode, D., Sommen, F.: Spherical harmonics and integration in superspace: II. J. Phys. A 42(24), 245204 (2009)

    MathSciNet  Google Scholar 

  • Delanghe, R.: On regular-analytic functions with values in a Clifford algebra. Math. Ann. 185, 91–111 (1970)

    MathSciNet  Google Scholar 

  • Delanghe, R.: Clifford analysis: history and perspective. Comput. Method Funct. Theory 1, 107–153 (2001)

    MathSciNet  MATH  Google Scholar 

  • Deuflhard, P.: On algorithms for the summation of certain special functions. Computing 17, 37–48 (1976)

    MathSciNet  MATH  Google Scholar 

  • Deuflhard, P., Hohmann, A.: Numerische Mathematik. de Gruyter, Berlin/New York (1991)

    Google Scholar 

  • Dressler, A.: Über die ungleichförmige Verteilung von Gitterpunkten in ebenen Bereichen. Math. Nachr. 52, 1–20 (1972)

    MathSciNet  MATH  Google Scholar 

  • Dufour, H.M.: Fonctions Orthogonales dans la Sphère—Résolution Théoretique du Problème du Potentiel Terrestre. B. Geod. 51, 227–237 (1977)

    Google Scholar 

  • Edmonds, A.R.: Drehimpulse in der Quantenmechanik. Bibliographisches Institut, Mannheim (1964)

    Google Scholar 

  • Engl, H.W., Louis, A.K., Rundell, W. (eds.): Inverse Problems in Geophysical Applications. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  • Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  • Epstein, P.S.: Zur Theorie allgemeiner Zetafunktionen I. Math. Ann. 56, 615–644 (1903)

    MathSciNet  MATH  Google Scholar 

  • Epstein, P.S.: Zur Theorie allgemeiner Zetafunktionen II. Math. Ann. 63, 205–216 (1907)

    MATH  Google Scholar 

  • Epton, M.A., Dembart, B.: Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16(4), 865–897 (1995)

    MathSciNet  MATH  Google Scholar 

  • Erdös, P., Gruber, M., Hammer, J.: Lattice Points. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 39. Longman Scientific-Technical/Wiley, New York (1989)

    Google Scholar 

  • Euler, L.: Methodus universalis serierum convergentium summas quam proxime inveniendi. Commentarii Academiae Scientiarum Petropolitanae 8, 3–9, Opera Omnia (XIV), 101–107 (1736a)

    Google Scholar 

  • Euler, L.: Methodus universalis series summandi ulterius promota. Commentarii Academiae Scientarium Petropolitanae 8, 147–158; Opera Omnia (XIV): 124–137 (1736b)

    Google Scholar 

  • Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, 3rd edn. Wiley, New York (2000)

    MATH  Google Scholar 

  • Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64, 253–287 (1921)

    MATH  Google Scholar 

  • Fengler, M.J.: Vector spherical harmonic and vector wavelet based non-linear Galerkin schemes for solving the incompressible Navier–Stokes equation on the sphere. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 2005

    Google Scholar 

  • Fengler, M.J., Freeden, W.: A non-linear Galerkin scheme involving vector and tensor spherical Harmonics for solving the incompressible Navier–Stokes equation on the sphere. SIAM J. Sci. Comput. 27, 967–994 (2005)

    MathSciNet  MATH  Google Scholar 

  • Fengler, M.J., Freeden, W., Gutting M.: Darstellung des Gravitationsfelds und seiner Funktionale mit Multiskalentechniken. Zeitschrift für Geodäsie, Geoinformation und Landmanagement (ZfV) 129(5), 323–334 (2004)

    Google Scholar 

  • Fengler, M.J., Freeden, W., Gutting, M.: The spherical Bernstein wavelet. Int. J. Pure Appl. Math. 31(2), 209–230 (2006)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W.: Über eine Klasse von Integralformeln der Mathematischen Geodäsie. Veröffentlichung des Geodätischen Instituts der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen, vol. 27. Aachen (1979)

    Google Scholar 

  • Freeden, W.: On integral formulas of the (unit) sphere and their application to numerical computation of integrals. Computing 25, 131–146 (1980a)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W.: Über die Gaußsche Methode zur angenäherten Berechnung von Integralen. Math. Method Appl. Sci. 2, 397–409 (1980b)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W.: On spherical spline interpolation and approximation. Math. Method Appl. Sci. 3, 551–575 (1981)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W.: Multidimensional Euler summation formulas and numerical cubature. Int. Ser. Num. Monogr. 57, 77–88 (1982)

    Google Scholar 

  • Freeden, W.: Spherical spline interpolation: basic theory and computational aspects. J. Comput. Appl. Math. 11, 367–375 (1984)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W.: Interpolation by multidimensional periodic splines. J. Approx. Theory 55, 104–117 (1988)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W.: Some applications of approximation theory to the first boundary value problem of elastostatics. Int. Ser. Num. Monogr. 94, 121–129 (1990)

    MathSciNet  Google Scholar 

  • Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Leipzig (1999)

    MATH  Google Scholar 

  • Freeden, W.: Metaharmonic Lattice Point Theory. Chapman & Hall/CRC, Boca Raton (2011)

    MATH  Google Scholar 

  • Freeden, W., Fleck, J.: Numerical integration by means of adapted Euler summation formulas. Numer. Math. 51, 37–64 (1987)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman & Hall/CRC, Boca Raton (2012)

    Google Scholar 

  • Freeden, W., Gutting, M.: On the completeness and closure of vector and tensor spherical harmonics. Integral Transform. Spec. Funct. 19, 713–734 (2008)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Hermann, P.: Uniform approximation by spherical spline interpolation. Math. Z. 193, 265–275 (1986)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Hesse, K.: On the multiscale solution of satellite problems by use of locally supported kernel functions corresponding to equidistributed data on spherical orbits. Stud. Sci. Math. Hung. 39, 37–74 (2002)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Michel, V.: Multiscale Potential Theory (with Applications to Geoscience). Birkhäuser, Boston/Basel/Berlin (2004)

    MATH  Google Scholar 

  • Freeden, W., Michel, V.: Wavelet deformation analysis for spherical bodies. Int. J. Wavelet Multi. 3, 523–558 (2005)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Nutz, H.: Satellite gravity gradiometry as tensorial inverse problem. Int. J. Geomath. 2, 177–218 (2011)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Reuter, R.: A class of multidimensional periodic splines. Manuscr. Math. 35, 371–386 (1981)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Reuter, R.: Remainder terms in numerical integration formulas of the sphere. Int. Ser. Num. Monogr. 61, 151–170 (1982)

    MathSciNet  Google Scholar 

  • Freeden, W., Reuter, R.: Exact computation of spherical harmonics. Computing 32, 365–378 (1984)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Reuter, R.: An efficient algorithm for the generation of homogeneous harmonic polynomials. In: Cox, M.G., Mason, J.C. (eds.) Scientific Software Systems, pp. 166–180. Chapman & Hall, London (1990)

    Google Scholar 

  • Freeden, W., Schreiner, M.: Multiresolution analysis by spherical up functions. Constr. Approx. 23, 241–259 (2006)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences, A Scalar, Vectorial, and Tensorial Setup. Springer, Berlin/Heidelberg (2009)

    MATH  Google Scholar 

  • Freeden, W., Gervens, T., Mason, J.C.: A minimum norm interpolation method for determining the displacement field of a homogeneous isotropic elastic body from discrete data. IMA J. Appl. Math. 44, 55–76 (1990)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Schreiner, M., Franke, R.: A survey on spherical spline approximation. Surv. Math. Ind. 7, 29–85 (1997)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (with Applications to Geomathematics). Oxford Science Publications/Clarendon, Oxford (1998)

    MATH  Google Scholar 

  • Freeden, W., Nashed, M.Z., Sonar, T. (eds.): Handbook of Geomathematics, vol. 1 + 2. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  • Freund, R.W., Hoppe, R.H.W.: Stoer/Bulirsch: Numerische Mathematik 1, 10th edn. Springer, Berlin/Heidelberg (2007)

    MATH  Google Scholar 

  • Fricker, F.: Geschichte des Kreisproblems. Mitt. Math. Sem. Giessen 111, 1–34 (1975)

    MathSciNet  Google Scholar 

  • Fricker, F.: Einführung in die Gitterpunktlehre. Birkhäuser, Basel (1982)

    MATH  Google Scholar 

  • Funk, H.: Beiträge zur Theorie der Kugelfunktionen. Math. Ann. 77, 136–152 (1916)

    MathSciNet  Google Scholar 

  • Gauß, C.F.: Disquisitiones Arithmetica. Leipzig (1801)

    Google Scholar 

  • Gauß, C.F.: De nexu inter multitudinem classicum, in quas formae binariae secondi grauds distribuuntur, earumque determinantem. Werke 2, 269–291 (1826)

    Google Scholar 

  • Gautschi, W.: Orthogonal Polynomials, Computation and Approximation. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  • Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2011)

    Google Scholar 

  • Gervens, T.: Vektorkugelfunktionen mit Anwendungen in der Theorie der elastischen Verformungen für die Kugel. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1989)

    Google Scholar 

  • Gill, A.E.: Atmosphere-Ocean Dynamics. Academic, New York (1982)

    Google Scholar 

  • Górski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M., Bartelmann, M.: HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005)

    Google Scholar 

  • Grafarend, E.W.: Three-dimensional deformation analysis: global vector spherical harmonic and local finite element representation. Tectonophysics 130, 337–359 (1986)

    Google Scholar 

  • Grafarend, E.W., Klapp, M., Martinec, Z.: Spacetime modeling of the Earth’s gravity field by ellipsoidal harmonics. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, pp. 159–252. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  • Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT, Cambridge (1988)

    MATH  Google Scholar 

  • Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(1), 325–348 (1987)

    MathSciNet  MATH  Google Scholar 

  • Greengard, L., Rokhlin, V.: Rapid Evaluation of Potential Fields in Three Dimensions. In: Anderson, C., Greengard, L. (eds.) Vortex Methods, pp. 121–141. Springer, Berlin (1988)

    Google Scholar 

  • Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)

    MathSciNet  Google Scholar 

  • Greville, T.N.E.: Introduction to spline functions. In: Greville, T.N.E. (ed.) Theory and Applications of Spline Functions, pp. 1–35. Academic, New York (1969)

    Google Scholar 

  • Groten, E.: Geodesy and the Earth’s Gravity Field, vol. I and II. Dümmler, Bonn (1979)

    Google Scholar 

  • Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Mathematical Research, vol. 56. Akademie Verlag, Berlin (1989)

    Google Scholar 

  • Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser, Basel/Boston/Berlin (2008)

    Google Scholar 

  • Gurtin, M.E.: The Linear Theory of Elasticity. Handbuch der Physik, vol. 6, 2nd edn. Springer, Heidelberg (1972)

    Google Scholar 

  • Gutting, M.: Fast multipole methods for oblique derivative problems. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen (2008)

    Google Scholar 

  • Gutting, M.: Fast multipole accelerated solution of the oblique derivative boundary value problem. Int. J. Geomath. 3(2), 223–252 (2012)

    MATH  Google Scholar 

  • Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69, 331–371 (1910)

    MathSciNet  MATH  Google Scholar 

  • Hämmerlin, G., Hoffmann, K.-H.: Numerische Mathematik. Springer, Berlin/Heidelberg/ New York (1992)

    MATH  Google Scholar 

  • Hamilton, W.R.: Elements of Quaternions. Longmans Green, London (1866)

    Google Scholar 

  • Hardy, G.H.: On the expression of a number as the sum of two squares. Q. J. Math. (Oxford) 46, 263–283 (1915)

    MATH  Google Scholar 

  • Hardy, G.H., Landau, E.: The lattice points of a circle. Proc. R. Soc. A 105, 244–258 (1924)

    MATH  Google Scholar 

  • Hartman, P., Wilcox, C.: On solutions of the Helmholtz equation in exterior domains. Math. Z. 75, 228–255 (1961)

    MathSciNet  MATH  Google Scholar 

  • Hecke, E.: Über orthogonal-invariante Integralgleichungen. Math. Ann. 78, 398–404 (1918)

    MathSciNet  Google Scholar 

  • Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. A Hadron. Nucl. 43(3), 172–198 (1927)

    MATH  Google Scholar 

  • Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)

    Google Scholar 

  • Helms, L.L.: Introduction to Potential Theory. Wiley-Interscience, New York (1969)

    MATH  Google Scholar 

  • Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 1187–1220. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  • Hielscher, R., Mainprice, D., Schaeben, H.: Material behavior: texture and anisotropy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 973–1003. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  • Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner, Leipzig (1912)

    MATH  Google Scholar 

  • Hill, E.H.: The theory of vector spherical harmonics. Am. J. Phys. 22, 211–214 (1954)

    MATH  Google Scholar 

  • Hlawka, E.: Gleichverteilung auf Produkten von Sphären. J. Reine Angew. Math. 330, 1–43 (1982)

    MathSciNet  MATH  Google Scholar 

  • Hlawka, E.: Näherungslösungen der Wellengleichung und verwandter Gleichungen durch zahlentheoretische Methoden. Öst. Akad. Wiss. Sber. II 193(8–10), 359–442 (1984)

    MathSciNet  MATH  Google Scholar 

  • Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Reprint Chelsea Publishing Company, New York (1955)

    Google Scholar 

  • Hochstadt, H.: The Functions of Mathematical Physics. Wiley-Intersciences, New York (1971)

    MATH  Google Scholar 

  • Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Vienna/New York (2005)

    Google Scholar 

  • Ivanow, V.K.: Higher-dimensional generalization of the Euler summation formula (Russian). Izv. Vuz. Mat. 6(37), 72–80 (1963)

    Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    Google Scholar 

  • James, R.W.: The Adams and Elsasser dynamo integrals. Proc. R. Soc. Lond. A 331, 469 (1973)

    Google Scholar 

  • James, R.W.: The spectral form of the magnetic induction equation. Proc. R. Soc. Lond. A 340, 287 (1974)

    Google Scholar 

  • James, R.W.: New tensor spherical harmonics, for application to the partial differential equations of mathematical physics. Philos. Trans. R. Soc. Lond. A 281, 195–221 (1976)

    MATH  Google Scholar 

  • Jänich, K.: Vektoranalysis, 5th edn. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  • Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics. Academic, London (1977)

    MATH  Google Scholar 

  • Jones, N.M.: Spherical Harmonics and Tensors for Classical Field Theory. Research Studies Press/Wiley, New York (1985)

    MATH  Google Scholar 

  • Kaula, W.M.: Theory of Satellite Geodesy. Blaisdell Company, Waltham (1966)

    Google Scholar 

  • Kellogg, O.D.: Foundations of Potential Theory. Frederick Ungar Publishing Company, New York (1929)

    Google Scholar 

  • Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)

    MATH  Google Scholar 

  • Knopp, K.: Funktionentheorie II. Sammlung Göschen, Bd. 703. Walter de Gruyter & Co, Berlin (1971)

    Google Scholar 

  • Knops, R.J., Payne, L.E.: Uniqueness Theorems in Linear Elasticity. Springer, Berlin (1971)

    MATH  Google Scholar 

  • Kotsiaris, S., Olsen, N.: The geomagnetic field gradient tensor. Int. J. Geomath. 3(2), 297–314 (2012)

    Google Scholar 

  • Krätzel, E.: Lattice Points. Kluwer Academic, Dordrecht/Boston/London (1988)

    MATH  Google Scholar 

  • Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)

    MATH  Google Scholar 

  • Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program for Scientific Translations, Jerusalem (1965)

    MATH  Google Scholar 

  • Lai, M., Krempl, E., Ruben, D.: Introduction to Continuum Mechanics, 4th edn. Elsevier, Amsterdam (2010)

    Google Scholar 

  • Laín Fernández, N., Prestin, J.: Localization of the spherical Gauß-Weierstrass kernel. In: Bojanov, B.D. (ed.) Constructive Theory of Functions, pp. 267–274. DA2BA, Sofia (2003)

    Google Scholar 

  • Lamp, U., Schleicher, K.-T., Wendland, W.L.: The fast Fourier transform and the numerical solution of one-dimensional boundary integral equations. Numer. Math. 47, 15–38 (1985)

    MathSciNet  MATH  Google Scholar 

  • Landau, E.: Über die Gitterpunkte in einem Kreise. I. Nachr. v. d. Gesellschaft d. Wiss. zu Göttingen, Math.-Phys. Klasse 148–160 (1915)

    Google Scholar 

  • Landau, E.: Vorlesungen über Zahlentheorie. Chelsea Publishing Compagny, New York (1969) (reprint from the orignal version published by S. Hirzel, Leipzig (1927))

    MATH  Google Scholar 

  • Landau, E.: Ausgewählte Abhandlungen zur Gitterlehre. VEB, Berlin (1962)

    Google Scholar 

  • Landau, L.D., Lifshitz, L.M.: Quantum Mechanics. Course of Theoretical Physics, vol. 3, 3rd edn. Elsevier, Amsterdam (2004)

    Google Scholar 

  • Lebedev, N.N.: Spezielle Funktionen und ihre Anwendungen. Bibliographisches Institut, Mannheim (1973)

    Google Scholar 

  • Leis, R.: Vorlesungen über partielle Differentialgleichungen zweiter Ordnung. BI-Hochschultaschenbücher, 165/165a, Bibliographisches Institut, Mannheim (1967)

    Google Scholar 

  • Lekkerkerker, C.G.: Geometry of Numbers. North Holland, Amsterdam/London (1969)

    MATH  Google Scholar 

  • Lense, J.: Kugelfunktionen. Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, vol. 23. Akademie Verlagsgesellschaft, Leipzig (1954)

    Google Scholar 

  • Lesieur, M.: Turbulence in Fluids, Third Revised and Enlarged Edition. Kluwer Academic, Dordrecht/Boston/London (1997)

    MATH  Google Scholar 

  • Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8(6), 535–563 (2002)

    MathSciNet  MATH  Google Scholar 

  • Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)

    MATH  Google Scholar 

  • Lurje, A.: Räumliche Probleme der Elastizitätstheorie. Akademie Verlag, Berlin (1963)

    MATH  Google Scholar 

  • Maclaurin, C.: A Treatise of Fluxions. Edinburgh (1742)

    Google Scholar 

  • Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 52, 3rd edn. Springer, Berlin (1966)

    Google Scholar 

  • Maier, T.: Multiscale geomagnetic field modedlling from satellite data. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2003)

    Google Scholar 

  • Maier, T.: Wavelet Mie representations for solenoidal fields with applications to ionospheric geomagnetic data. SIAM J. Appl. Math. 65(6), 1888–1912 (2005)

    MathSciNet  MATH  Google Scholar 

  • Marion, M., Teman, R.: Non-linear Galerkin methods. SIAM J. Numer. Anal. 26(5), 1139–1157 (1989)

    MathSciNet  MATH  Google Scholar 

  • Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1994)

    Google Scholar 

  • Martensen, E.: Potentialtheorie. Leitfäden der Angewandten Mathematik und Mechanik, Bd. 12. Teubner, Leipzig (1968)

    Google Scholar 

  • Mayer, C.: Wavelet modelling of ionospheric currents and induced magnetic fields from satellite data. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2003)

    Google Scholar 

  • Messiah, A.: Quantenmechanik. Walter de Gruyter. Berlin/New York (1990)

    Google Scholar 

  • Michel, V.: A multiscale method for the gravimetry Problem—theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 1999

    Google Scholar 

  • Michel, V.: Tomography: Problems and Multiscale Solutions. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 949–972. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  • Michel, V.: Lectures on Constructive Approximation—Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser, Boston (2012)

    Google Scholar 

  • Michlin, S.G.: Mathematical Physics, an Advanced Course. North Holland, Amsterdam/London (1970)

    Google Scholar 

  • Michlin, S.G.: Lehrgang der Mathematischen Physik, 2nd edn. Akademie Verlag, Berlin (1975)

    MATH  Google Scholar 

  • Miranda, C.: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970)

    MATH  Google Scholar 

  • Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco (1973)

    Google Scholar 

  • Mochizuki, E.: Spherical harmonic development of an elastic tensor. Geophys. J. Int. 93(3), 521–526 (1988)

    MathSciNet  MATH  Google Scholar 

  • Moisil, G.C., Teodorescu, N.: Fonctions holomorphes dans l’espace. Mathematica (Cluj) 5, 142–159 (1931)

    Google Scholar 

  • Mordell, L.J.: Poisson’s summation formula in several variables and some applications to the theory of numbers. Math. Proc. Camb. 25, 412–420 (1928)

    Google Scholar 

  • Mordell, L.J.: Poisson’s summation formula and the Riemann Zeta function. J. Lond. Math. Soc. 4, 285–296 (1929)

    MathSciNet  MATH  Google Scholar 

  • Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  • Müller, C.: Über die ganzen Lösungen der Wellengleichung (nach einem Vortrag von G. Herglotz). Math. Ann. 124, 235–264 (1952)

    Google Scholar 

  • Müller, C: Eine Verallgemeinerung der Eulerschen Summenformel und ihre Anwendung auf Fragen der analytischen Zahlentheorie. Abh. Math. Sem. Univ. Hamburg 19, 41–61 (1954)

    MathSciNet  MATH  Google Scholar 

  • Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)

    Google Scholar 

  • Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)

    MATH  Google Scholar 

  • Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Springer, New York/Berlin/ Heidelberg (1998)

    MATH  Google Scholar 

  • Müller, C., Dressler, A.: Über eine gewichtete Mittelung der Gitterpunkte in der Ebene. J. Reine Angew. Math. 252, 82–87 (1972)

    MathSciNet  MATH  Google Scholar 

  • Nashed, M.Z.: On moment-discretization and least-squares solutions of linear integral equations of the first kind. J. Math. Anal. Appl. 53, 359–366 (1976a)

    MathSciNet  MATH  Google Scholar 

  • Nashed, M.Z.: Generalized Inverses and Applications. Academic, New York (1976b)

    MATH  Google Scholar 

  • Nashed, M.Z., Whaba, G.: Generalized inverses in reproducing kernel spacxes: an approach to regularization of linear operator equations. SIAM J. Math. Anal. 5, 974–987 (1974)

    MathSciNet  Google Scholar 

  • Nashed, M.Z.: Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory. IEEE Trans. Antenn. Propag. 29, 220–231 (1981)

    MathSciNet  Google Scholar 

  • Newton, I.: Philosophiæ Naturalis Principia Mathematica, vol. 3, De Munde Systemate (1687)

    Google Scholar 

  • Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Method. SIAM, Philadelphia (1992)

    Google Scholar 

  • Nielsen, N.: Handbuch der Theorie der Gammafunktion. Teubner, Leipzig (1906)

    Google Scholar 

  • Niemeyer, H.: Lokale und asympotische Eigenschaften der Lösung der Helmholtzschen Schwingungsgleichung. Jahresbericht d. DMV 65, 1–44 (1962)

    MathSciNet  MATH  Google Scholar 

  • Nijboer, B.R.A., de Wette, F.W.: On the calculation of lattice sums. Physica 23, 309–321 (1957)

    MathSciNet  MATH  Google Scholar 

  • Norbury, J., Roulstone, I.: Large-Scale Atmospere-Ocean Dynamics I. Analytic Methods and Numerical Methods. Cambridge University Press, Cambridge (2002a)

    Google Scholar 

  • Norbury, J., Roulstone, I.: Large-Scale Atmospere-Ocean Dynamics II, Geometric Methods and Models. Cambridge University Press, Cambridge (2002b)

    Google Scholar 

  • Nutz, H.: A unified setup of gravitational field observables. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 2002

    Google Scholar 

  • Ostermann, I.: Modeling heat transport in deep geothermal systems by radial basis functions. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2011)

    Google Scholar 

  • Pail, R., Plank, G.: Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J. Geod. 76, 462–474 (2002)

    MATH  Google Scholar 

  • Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill, New York (2002)

    Google Scholar 

  • Pedlowsky, J.: Geophysical Fluid Dynamics. Springer, New York/Heidelberg/Berlin (1979)

    Google Scholar 

  • Qian, T., Hempfling, T., McIntosh, A., Sommen, F. (eds.): Advances in Analysis and Geometry: New Developments Using Clifford Algebras. Trends in Mathematics. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  • Rademacher, H.: Topics in Analytic Number Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 169. Springer, Berlin/Heidelberg/New York (1973)

    Google Scholar 

  • Rakhmanov, E.A., Saff, E.B., Zhou Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)

    MathSciNet  MATH  Google Scholar 

  • Reed, M., Simon, B.: Functional Analysis I. Academic, New York (1972)

    Google Scholar 

  • Reuter, R.: Über Integralformeln der Einheitssphäre und harmonische Splinefunktionen. Ph.D. thesis, Veröff. Geod. Inst. RWTH Aachen, Report No. 33, 1982

    Google Scholar 

  • Richter, L.: Über die Inversion einer Legendreschen Integraltransformation und ihre Anwendung. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, 1971

    Google Scholar 

  • Rieder, A.: Keine Probleme mit inversen Problemen. Vieweg, Wiesbaden (2003)

    MATH  Google Scholar 

  • Rivlin, T.J.: Chebychev Polynomials, 2nd edn. Wiley, New York (1990)

    Google Scholar 

  • Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)

    MathSciNet  MATH  Google Scholar 

  • Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York/London/Sydney (1957)

    MATH  Google Scholar 

  • Rudin, W.: Functional Analysis. McGraw-Hill, Boston (1991)

    MATH  Google Scholar 

  • Rummel, R., van Gelderen, M.: Spectral analysis of the full gravity tensor. Geophys. J. Int. 111, 159–169 (1992)

    Google Scholar 

  • Rvachev, V.A.: Compactly supported solutions of functional-differential equations and their applications. Russ. Math. Surv. 45, 87–120 (1990)

    MathSciNet  MATH  Google Scholar 

  • Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)

    MathSciNet  MATH  Google Scholar 

  • Sard, A.: Best approximate integration formulas. Am. J. Math. 71, 80–91 (1949)

    MathSciNet  MATH  Google Scholar 

  • Sauter, S.A.: Der Aufwand der Panel-Clustering-Methode für Integralgleichungen. Technical Report 9115, Institute for Computer Science and Applied Mathematics, University of Kiel (1991)

    Google Scholar 

  • Schaeben, H., van den Boogaart, K.G.: Spherical harmonics in texture analysis. Tectonophysics 370, 253–268 (2003)

    Google Scholar 

  • Schmidt, K.E., Lee, M.A.: Implementing the fast multipole method in three dimensions. J. Stat. Phys. 63 1223–1235 (1991)

    Google Scholar 

  • Schoenberg, I.J.: On trigonometric spline interpolation. J. Math. Mech. 13, 795–825 (1964)

    MathSciNet  MATH  Google Scholar 

  • Schreiner, M.: Tensor spherical harmonics and their application in satellite gradiometry. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (1994)

    Google Scholar 

  • Schulten, K., Gordon, R.G.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum-mechanical coupling of angular momentum. J. Math. Phys. 16(10), 1961–1970 (1975)

    MathSciNet  Google Scholar 

  • Schulten, K., Gordon, R.G.: Recursive evaluation of 3j and 6j coefficients. Comput. Phys. Commun. 11, 269–278 (1976)

    Google Scholar 

  • Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  • Shore, B.W., Menzel, D.H.: Principles of Atomic Spectra. Wiley, New York/London/Sydney (1968)

    Google Scholar 

  • Sieber, N., Sebastian, H.-J.: Spezielle Funktionen, 3rd edn. B.G. Teubner, Leipzig (1988)

    MATH  Google Scholar 

  • Sneddon, I.N.: Special Functions of Mathematical Physics and Chemistry, 3rd edn. Longman, New York (1980)

    MATH  Google Scholar 

  • Sneeuw, N.: A semi-analytical approach to gravity field analysis from satellite observations. Ph.D. thesis, TU Munich, Deutsche Geodätische Kommission, Reihe A, 527 (2000)

    Google Scholar 

  • Sommerfeld, A.: Partielle Differentialgleichnugen der Physik, 6th edn. Akademische Verlagsgesellschaft, Leipzig (1966)

    Google Scholar 

  • Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  • Strubecker, K.: Differentialgeometrie I, II. Sammlung Göschen, de Gruyter, Berlin (1964)

    Google Scholar 

  • Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Rhode Island (1967)

    Google Scholar 

  • Teman, R.: Navier–Stokes Equations: Theory and Numerical Analyis. North-Holland, Amsterdam/Newyork/Oxford (1979)

    Google Scholar 

  • Teman, R.: Navier–Stokes Equations and Non-Linear Functional Analysis. SIAM, Philadelphia (1983)

    Google Scholar 

  • Thomson, K.: Generalized Spiral Points: Further Improvement. https://groups.google.com/d/topic/sci.math/CYMQX7HO1Cw/discussion (2007). Cited 17 Jul 2012.

  • Tichy, R.F.: Ein Approximationsverfahren zur Lösung spezieller partieller Differentialgleichungen. ZAMM. 68, 187–188 (1988)

    MathSciNet  MATH  Google Scholar 

  • Tichy, R.F.: Random points in the cube and on the sphere with applications to numerical analysis. J. Comput. Appl. Math. 31(1), 191–197 (1990)

    MathSciNet  MATH  Google Scholar 

  • Titchmarsh, E.C.: The Theory of Riemann Zeta-Function. Clarendon, Oxford (1951)

    MATH  Google Scholar 

  • Torge, W.: Geodesy, 3rd edn. de Gruyter, Berlin (2001)

    Google Scholar 

  • Tscherning, C.C.: Computation of the second-order derivatives of the normal potential based on the representation by a Legendre series. Manusc. Geodaet. 1, 71–92 (1976)

    Google Scholar 

  • Tscherning, C.C.: Isotropic reproducing kernels for the inner of a sphere or spherical shell and their use as density covariance functions. Math. Geol. 28, 161–168 (1996)

    MathSciNet  MATH  Google Scholar 

  • van der Corput, B.L.: Verteilungsfunktionen I. Proc. Nederl. Akad. Wetensch. 38, 813–821 (1935a)

    Google Scholar 

  • van der Corput, B.L.: Verteilungsfunktionen II. Proc. Nederl. Akad. Wetensch. 38, 1058–1066 (1935b)

    Google Scholar 

  • van der Waerden, B.L.: Mathematical Statistics. Springer, Heidelberg (1969)

    MATH  Google Scholar 

  • Vars̆alovic̆, D.A., Moskalev, A.N., Chersonskij, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Google Scholar 

  • Vilenkin, N.J.: Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, vol. 22. American Mathematical Society, Providence (1968)

    Google Scholar 

  • Wahba, G.: Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat. Comp. 2, 5–16 (1981) (also errata: SIAM J. Sci. Stat. Comp. 3, 385–386 (1982))

    Google Scholar 

  • Walfisz, A.: Gitterpunkte in mehrdimensionalen Kugeln. Acta Arith. 6, 115–136, 193–215 (1960)

    MathSciNet  Google Scholar 

  • Wangerin, A.: Theorie des Potentials und der Kugelfunktionen (I,II). de Gruyter, Leipzig (1921)

    Google Scholar 

  • Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  • Weyl, H.: The Theory of Groups and Quantum Mechanics. E.P. Dutton, New York (1931)

    MATH  Google Scholar 

  • Wienholtz, E., Kalf, H., Kriecherbauer, T.: Elliptische Differentialgleichungen zweiter Ordnung. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  • Wienkamp, R.: Über eine Klasse verallgemeinerter Zetafunktionen. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1958)

    Google Scholar 

  • White, C.A., Head-Gordon, M.: Rotating around the quartic angular momentum barrier in fast multipole method calculations. J. Chem. Phys. 105(12), 5061–5067 (1996)

    Google Scholar 

  • Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1948)

    Google Scholar 

  • Xu, C., Sneeuw, N., Sideris, M.G.: The torus approach in spaceborne gravimetry. In: Xu, P., Liu, J., Dermanis, A. (eds.) IAG Symposium, vol. 132, pp. 23–28. Springer, Heidelberg (2008)

    Google Scholar 

  • Yoshida, K.: Functional Analysis. Springer, Berlin (1980)

    Google Scholar 

  • Zare, R.N.: Angular Momentum. Wiley-Interscience, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Freeden, W., Gutting, M. (2013). Orthogonal Polynomials. In: Special Functions of Mathematical (Geo-)Physics. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0563-6_3

Download citation

Publish with us

Policies and ethics