Special Functions of Mathematical (Geo-)Physics pp 427-482 | Cite as
Lattice Functions in \(\mathbb{R}^q\)
- 1.9k Downloads
Abstract
If an attempt is made to generalize the one-dimensional theory to a higher dimensional case, we are confronted with pointwise convergence problems for the bilinear series of the multi-variate counterpart of G(Δ; ⋅). Nonetheless, as we have already seen in the one-dimensional case in Chap.9, we are able to circumvent any possible calamities by paying close attention to the defining constituents. However, the q-dimensional theory remains more complicated, since the characteristic singularity of the lattice function in lattice points becomes much harder to handle with increasing dimension. In conclusion, the proof of the Euler summation formula associated to the Laplace operator as well as the specification of sufficient criteria for validity of the Poisson summation formula is a matter of multi-dimensional potential theory. The results obtained in such a way are applicable in many branches, e.g., the calculation of certain lattice point sums involving charged particles, functional equations of Zeta and Theta functions, etc. Some of the applications are worked into exercises in Sect.10.9, where we also explain the interrelations between Green and spline functions. Our multi-periodic approach is based on the concepts of metaharmonic lattice point theory as presented in Freeden(2011).
Keywords
Lattice Point Zeta Function Laplace Operator Theta Function Summation FormulaReferences
- .Abeyratne, M.K., Freeden, W., Mayer, C.: Multiscale deformation analysis by Cauchy-Navier wavelets. J. Appl. Math. 2003(12), 605–645 (2003)MathSciNetzbMATHGoogle Scholar
- .Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1972)zbMATHGoogle Scholar
- .Anger, G., Gorenflo, R., Jochmann, H., Moritz, H., Webers, W.: Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine. Mathematical Research, vol. 74. Akademie Verlag, Berlin (1993)Google Scholar
- .Ansorge, R., Sonar, T.: Mathematical Models of Fluid Dynamics. Wiley-VCH, Weinheim (2009)Google Scholar
- .Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)MathSciNetzbMATHGoogle Scholar
- .Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Clarendon, Oxford (1983)zbMATHGoogle Scholar
- .Artin, E.: The Gamma Function. Holt, Rinehart and Winston, New York (1964)zbMATHGoogle Scholar
- .Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics, vol. 2044. Springer, Heidelberg (2012)Google Scholar
- .Backus, G.E.: Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys. J. R. Astron. Soc. 13, 61–101 (1967)Google Scholar
- .Backus, G.E.: Poloidal and toroidal fields in geomagnetic field modelling. Rev. Geophys. 24, 75–109 (1986)MathSciNetGoogle Scholar
- .Backus, G.E., Parker, R., Constable, C.: Foundations of Geomagnetism. Cambridge University Press, Cambridge (1996)Google Scholar
- .Ballani, L., Engels, J., Grafarend, E.W.: Global base functions for the mass density in the interior of a massive body (Earth). Manuscr. Geod. 18, 99–114 (1993)Google Scholar
- .Bayer, M., Freeden, W., Maier, T.: A vector wavelet approach in iono- and magnetospheric geomagnetic satellite data. J. Atmos. Sol. Terr. Phys. 63, 581–597 (2001)Google Scholar
- .Bauch, H.: Approximationssätze für die Lösung der Grundgleichung der Elastostatik. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1981)Google Scholar
- .Beatson, R.K., Greengard, L.: A short course on fast multipole methods. In: Light, W., Ainsworth, M., Levesley, J., Marletta, M. (eds.) Wavelets, Multilevel Methods, and Elliptic PDEs, pp. 1–37. Oxford University Press, Oxford (1997)Google Scholar
- .Benedetto, J.J.: Frame decompositions, sampling, and uncertainty principle inequalities. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications, pp. 247–304. CRC, Boca Raton (1994)Google Scholar
- .Benedetto, J.J.: Harmonic Analysis and Applications. CRC, Boca Raton (1996)zbMATHGoogle Scholar
- .Benedetto, J.J., Zayed, A.I. (eds.): Sampling, Wavelets, and Tomography. Birkhäuser, Boston (2004)zbMATHGoogle Scholar
- .Berman, C.L., Greengard, L.: A renormalization method for the evaluation of lattice sums. J. Math. Phys. 35(11), 6036–6048 (1994)MathSciNetzbMATHGoogle Scholar
- .Bessel, F.W.: Untersuchung des Theils der planetarischen Störungen, welcher aus der Bewegung der Sonne entsteht. Berliner Abh, pp. 1–52 (1824)Google Scholar
- .Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics (Theory and Application). Encyclopedia of Mathematics and Its Applications. Addison-Wesley, Reading (1981)zbMATHGoogle Scholar
- .Blakely, R.J.: Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge (1996)Google Scholar
- .Blatt, J., Weisskopf, V.: Theoretical Nuclear Physics. Wiley, New York (1952)zbMATHGoogle Scholar
- .Borwein, D., Borwein, J.M., Shail, R.: Analysis of certain lattice sums. J. Math. Anal. Appl. 143, 126–137 (1989)MathSciNetzbMATHGoogle Scholar
- .Brackx, F., Delanghe, R.: On harmonic potential fields and the structure of monogenic functions. J. Anal. Appl. 22, 261–273 (2003)MathSciNetzbMATHGoogle Scholar
- .Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman, Boston (1982)Google Scholar
- .Braun, M.: Laguerre polynomials and the vibrations of a multiple pendulum. SIAM OP-SF Newsl. 7(3), 17–20 (1997)Google Scholar
- .Brink, D.M., Satchler, G.R.: Angular Momentum. Oxford Library of the Physical Sciences. Clarendon, Oxford (1968)Google Scholar
- .Butzer, P.L., Nessel, R.: Fourier Analysis and Approximation Theory. Birkhäuser, Basel (1971)zbMATHGoogle Scholar
- .Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin/Heidelberg/ New York (1968)Google Scholar
- .Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)MathSciNetzbMATHGoogle Scholar
- .Cherrie, J.B., Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions: methods for generalised multiquadrics in \({\mathbb{R}}^{n}\). SIAM J. Sci. Comput. 23(5), 1549–1571 (2002)MathSciNetzbMATHGoogle Scholar
- .Choi, C.H., Ivanic, J., Gordon, M.S., Ruedenberg, K.: Rapid and staple determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys. 111(19), 8825–8831 (1999)Google Scholar
- .Ciarlet, P.G.: Mathematical Elasticity: Volume I: Three-Dimensional Elasticity. Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1994)Google Scholar
- .Clenshaw, C.W.: A note on the summation of Chebyshev series. Math. Table Wash. 9, 118–120 (1955)MathSciNetzbMATHGoogle Scholar
- .Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1, 350–358 (1878)MathSciNetGoogle Scholar
- .Cohen, L.: Time Frequency Analysis: Theory and Applications. Prentice Hall, Englewood Cliffs (1995)Google Scholar
- .Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 93, 2nd edn. Springer, Berlin/Heidelberg/New York (1998)Google Scholar
- .Cooley, J.W., Tukey, O.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetzbMATHGoogle Scholar
- .Courant, R., Hilbert, D.: Methoden der Mathematischen Physik I, II, 2nd edn. Springer, Berlin (1968)Google Scholar
- .Cui, J., Freeden, W.: Equidistribution on the sphere. SIAM J. Sci. Stat. Comput. 18(2), 595–609 (1997)MathSciNetzbMATHGoogle Scholar
- .Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, Waltham (1963)zbMATHGoogle Scholar
- .Davis, P.J., Rabinowitz, P.: Numerical Integration. Blaisdell, Toronto/London (1967)zbMATHGoogle Scholar
- .De Bie, H., Sommen, F.: Spherical harmonics and integration in superspace. J. Phys. A 40(26), 7193–7212 (2007)MathSciNetzbMATHGoogle Scholar
- .De Bie, H., Eelbode, D., Sommen, F.: Spherical harmonics and integration in superspace: II. J. Phys. A 42(24), 245204 (2009)MathSciNetGoogle Scholar
- .Delanghe, R.: On regular-analytic functions with values in a Clifford algebra. Math. Ann. 185, 91–111 (1970)MathSciNetGoogle Scholar
- .Delanghe, R.: Clifford analysis: history and perspective. Comput. Method Funct. Theory 1, 107–153 (2001)MathSciNetzbMATHGoogle Scholar
- .Deuflhard, P.: On algorithms for the summation of certain special functions. Computing 17, 37–48 (1976)MathSciNetzbMATHGoogle Scholar
- .Deuflhard, P., Hohmann, A.: Numerische Mathematik. de Gruyter, Berlin/New York (1991)Google Scholar
- .Dressler, A.: Über die ungleichförmige Verteilung von Gitterpunkten in ebenen Bereichen. Math. Nachr. 52, 1–20 (1972)MathSciNetzbMATHGoogle Scholar
- .Dufour, H.M.: Fonctions Orthogonales dans la Sphère—Résolution Théoretique du Problème du Potentiel Terrestre. B. Geod. 51, 227–237 (1977)Google Scholar
- .Edmonds, A.R.: Drehimpulse in der Quantenmechanik. Bibliographisches Institut, Mannheim (1964)Google Scholar
- .Engl, H.W., Louis, A.K., Rundell, W. (eds.): Inverse Problems in Geophysical Applications. SIAM, Philadelphia (1997)zbMATHGoogle Scholar
- .Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (2000)Google Scholar
- .Epstein, P.S.: Zur Theorie allgemeiner Zetafunktionen I. Math. Ann. 56, 615–644 (1903)MathSciNetzbMATHGoogle Scholar
- .Epstein, P.S.: Zur Theorie allgemeiner Zetafunktionen II. Math. Ann. 63, 205–216 (1907)zbMATHGoogle Scholar
- .Epton, M.A., Dembart, B.: Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16(4), 865–897 (1995)MathSciNetzbMATHGoogle Scholar
- .Erdös, P., Gruber, M., Hammer, J.: Lattice Points. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 39. Longman Scientific-Technical/Wiley, New York (1989)Google Scholar
- .Euler, L.: Methodus universalis serierum convergentium summas quam proxime inveniendi. Commentarii Academiae Scientiarum Petropolitanae 8, 3–9, Opera Omnia (XIV), 101–107 (1736a)Google Scholar
- .Euler, L.: Methodus universalis series summandi ulterius promota. Commentarii Academiae Scientarium Petropolitanae 8, 147–158; Opera Omnia (XIV): 124–137 (1736b)Google Scholar
- .Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, 3rd edn. Wiley, New York (2000)zbMATHGoogle Scholar
- .Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64, 253–287 (1921)zbMATHGoogle Scholar
- .Fengler, M.J.: Vector spherical harmonic and vector wavelet based non-linear Galerkin schemes for solving the incompressible Navier–Stokes equation on the sphere. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 2005Google Scholar
- .Fengler, M.J., Freeden, W.: A non-linear Galerkin scheme involving vector and tensor spherical Harmonics for solving the incompressible Navier–Stokes equation on the sphere. SIAM J. Sci. Comput. 27, 967–994 (2005)MathSciNetzbMATHGoogle Scholar
- .Fengler, M.J., Freeden, W., Gutting M.: Darstellung des Gravitationsfelds und seiner Funktionale mit Multiskalentechniken. Zeitschrift für Geodäsie, Geoinformation und Landmanagement (ZfV) 129(5), 323–334 (2004)Google Scholar
- .Fengler, M.J., Freeden, W., Gutting, M.: The spherical Bernstein wavelet. Int. J. Pure Appl. Math. 31(2), 209–230 (2006)MathSciNetzbMATHGoogle Scholar
- .Freeden, W.: Über eine Klasse von Integralformeln der Mathematischen Geodäsie. Veröffentlichung des Geodätischen Instituts der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen, vol. 27. Aachen (1979)Google Scholar
- .Freeden, W.: On integral formulas of the (unit) sphere and their application to numerical computation of integrals. Computing 25, 131–146 (1980a)MathSciNetzbMATHGoogle Scholar
- .Freeden, W.: Über die Gaußsche Methode zur angenäherten Berechnung von Integralen. Math. Method Appl. Sci. 2, 397–409 (1980b)MathSciNetzbMATHGoogle Scholar
- .Freeden, W.: On spherical spline interpolation and approximation. Math. Method Appl. Sci. 3, 551–575 (1981)MathSciNetzbMATHGoogle Scholar
- .Freeden, W.: Multidimensional Euler summation formulas and numerical cubature. Int. Ser. Num. Monogr. 57, 77–88 (1982)Google Scholar
- .Freeden, W.: Spherical spline interpolation: basic theory and computational aspects. J. Comput. Appl. Math. 11, 367–375 (1984)MathSciNetzbMATHGoogle Scholar
- .Freeden, W.: Interpolation by multidimensional periodic splines. J. Approx. Theory 55, 104–117 (1988)MathSciNetzbMATHGoogle Scholar
- .Freeden, W.: Some applications of approximation theory to the first boundary value problem of elastostatics. Int. Ser. Num. Monogr. 94, 121–129 (1990)MathSciNetGoogle Scholar
- .Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Leipzig (1999)zbMATHGoogle Scholar
- .Freeden, W.: Metaharmonic Lattice Point Theory. Chapman & Hall/CRC, Boca Raton (2011)zbMATHGoogle Scholar
- .Freeden, W., Fleck, J.: Numerical integration by means of adapted Euler summation formulas. Numer. Math. 51, 37–64 (1987)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman & Hall/CRC, Boca Raton (2012)Google Scholar
- .Freeden, W., Gutting, M.: On the completeness and closure of vector and tensor spherical harmonics. Integral Transform. Spec. Funct. 19, 713–734 (2008)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Hermann, P.: Uniform approximation by spherical spline interpolation. Math. Z. 193, 265–275 (1986)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Hesse, K.: On the multiscale solution of satellite problems by use of locally supported kernel functions corresponding to equidistributed data on spherical orbits. Stud. Sci. Math. Hung. 39, 37–74 (2002)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Michel, V.: Multiscale Potential Theory (with Applications to Geoscience). Birkhäuser, Boston/Basel/Berlin (2004)zbMATHGoogle Scholar
- .Freeden, W., Michel, V.: Wavelet deformation analysis for spherical bodies. Int. J. Wavelet Multi. 3, 523–558 (2005)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Nutz, H.: Satellite gravity gradiometry as tensorial inverse problem. Int. J. Geomath. 2, 177–218 (2011)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Reuter, R.: A class of multidimensional periodic splines. Manuscr. Math. 35, 371–386 (1981)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Reuter, R.: Remainder terms in numerical integration formulas of the sphere. Int. Ser. Num. Monogr. 61, 151–170 (1982)MathSciNetGoogle Scholar
- .Freeden, W., Reuter, R.: Exact computation of spherical harmonics. Computing 32, 365–378 (1984)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Reuter, R.: An efficient algorithm for the generation of homogeneous harmonic polynomials. In: Cox, M.G., Mason, J.C. (eds.) Scientific Software Systems, pp. 166–180. Chapman & Hall, London (1990)Google Scholar
- .Freeden, W., Schreiner, M.: Multiresolution analysis by spherical up functions. Constr. Approx. 23, 241–259 (2006)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences, A Scalar, Vectorial, and Tensorial Setup. Springer, Berlin/Heidelberg (2009)zbMATHGoogle Scholar
- .Freeden, W., Gervens, T., Mason, J.C.: A minimum norm interpolation method for determining the displacement field of a homogeneous isotropic elastic body from discrete data. IMA J. Appl. Math. 44, 55–76 (1990)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Schreiner, M., Franke, R.: A survey on spherical spline approximation. Surv. Math. Ind. 7, 29–85 (1997)MathSciNetzbMATHGoogle Scholar
- .Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (with Applications to Geomathematics). Oxford Science Publications/Clarendon, Oxford (1998)zbMATHGoogle Scholar
- .Freeden, W., Nashed, M.Z., Sonar, T. (eds.): Handbook of Geomathematics, vol. 1 + 2. Springer, Berlin/Heidelberg (2010)Google Scholar
- .Freund, R.W., Hoppe, R.H.W.: Stoer/Bulirsch: Numerische Mathematik 1, 10th edn. Springer, Berlin/Heidelberg (2007)zbMATHGoogle Scholar
- .Fricker, F.: Geschichte des Kreisproblems. Mitt. Math. Sem. Giessen 111, 1–34 (1975)MathSciNetGoogle Scholar
- .Fricker, F.: Einführung in die Gitterpunktlehre. Birkhäuser, Basel (1982)zbMATHGoogle Scholar
- .Funk, H.: Beiträge zur Theorie der Kugelfunktionen. Math. Ann. 77, 136–152 (1916)MathSciNetGoogle Scholar
- .Gauß, C.F.: Disquisitiones Arithmetica. Leipzig (1801)Google Scholar
- .Gauß, C.F.: De nexu inter multitudinem classicum, in quas formae binariae secondi grauds distribuuntur, earumque determinantem. Werke 2, 269–291 (1826)Google Scholar
- .Gautschi, W.: Orthogonal Polynomials, Computation and Approximation. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
- .Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2011)Google Scholar
- .Gervens, T.: Vektorkugelfunktionen mit Anwendungen in der Theorie der elastischen Verformungen für die Kugel. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1989)Google Scholar
- .Gill, A.E.: Atmosphere-Ocean Dynamics. Academic, New York (1982)Google Scholar
- .Górski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M., Bartelmann, M.: HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005)Google Scholar
- .Grafarend, E.W.: Three-dimensional deformation analysis: global vector spherical harmonic and local finite element representation. Tectonophysics 130, 337–359 (1986)Google Scholar
- .Grafarend, E.W., Klapp, M., Martinec, Z.: Spacetime modeling of the Earth’s gravity field by ellipsoidal harmonics. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, pp. 159–252. Springer, Berlin/Heidelberg (2010)Google Scholar
- .Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT, Cambridge (1988)zbMATHGoogle Scholar
- .Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(1), 325–348 (1987)MathSciNetzbMATHGoogle Scholar
- .Greengard, L., Rokhlin, V.: Rapid Evaluation of Potential Fields in Three Dimensions. In: Anderson, C., Greengard, L. (eds.) Vortex Methods, pp. 121–141. Springer, Berlin (1988)Google Scholar
- .Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)MathSciNetGoogle Scholar
- .Greville, T.N.E.: Introduction to spline functions. In: Greville, T.N.E. (ed.) Theory and Applications of Spline Functions, pp. 1–35. Academic, New York (1969)Google Scholar
- .Groten, E.: Geodesy and the Earth’s Gravity Field, vol. I and II. Dümmler, Bonn (1979)Google Scholar
- .Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Mathematical Research, vol. 56. Akademie Verlag, Berlin (1989)Google Scholar
- .Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser, Basel/Boston/Berlin (2008)Google Scholar
- .Gurtin, M.E.: The Linear Theory of Elasticity. Handbuch der Physik, vol. 6, 2nd edn. Springer, Heidelberg (1972)Google Scholar
- .Gutting, M.: Fast multipole methods for oblique derivative problems. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen (2008)Google Scholar
- .Gutting, M.: Fast multipole accelerated solution of the oblique derivative boundary value problem. Int. J. Geomath. 3(2), 223–252 (2012)zbMATHGoogle Scholar
- .Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69, 331–371 (1910)MathSciNetzbMATHGoogle Scholar
- .Hämmerlin, G., Hoffmann, K.-H.: Numerische Mathematik. Springer, Berlin/Heidelberg/ New York (1992)zbMATHGoogle Scholar
- .Hamilton, W.R.: Elements of Quaternions. Longmans Green, London (1866)Google Scholar
- .Hardy, G.H.: On the expression of a number as the sum of two squares. Q. J. Math. (Oxford) 46, 263–283 (1915)Google Scholar
- .Hardy, G.H., Landau, E.: The lattice points of a circle. Proc. R. Soc. A 105, 244–258 (1924)zbMATHGoogle Scholar
- .Hartman, P., Wilcox, C.: On solutions of the Helmholtz equation in exterior domains. Math. Z. 75, 228–255 (1961)MathSciNetzbMATHGoogle Scholar
- .Hecke, E.: Über orthogonal-invariante Integralgleichungen. Math. Ann. 78, 398–404 (1918)MathSciNetGoogle Scholar
- .Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. A Hadron. Nucl. 43(3), 172–198 (1927)zbMATHGoogle Scholar
- .Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)Google Scholar
- .Helms, L.L.: Introduction to Potential Theory. Wiley-Interscience, New York (1969)zbMATHGoogle Scholar
- .Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 1187–1220. Springer, Berlin/Heidelberg (2010)Google Scholar
- .Hielscher, R., Mainprice, D., Schaeben, H.: Material behavior: texture and anisotropy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 973–1003. Springer, Berlin/Heidelberg (2010)Google Scholar
- .Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner, Leipzig (1912)zbMATHGoogle Scholar
- .Hill, E.H.: The theory of vector spherical harmonics. Am. J. Phys. 22, 211–214 (1954)zbMATHGoogle Scholar
- .Hlawka, E.: Gleichverteilung auf Produkten von Sphären. J. Reine Angew. Math. 330, 1–43 (1982)MathSciNetzbMATHGoogle Scholar
- .Hlawka, E.: Näherungslösungen der Wellengleichung und verwandter Gleichungen durch zahlentheoretische Methoden. Öst. Akad. Wiss. Sber. II 193(8–10), 359–442 (1984)MathSciNetzbMATHGoogle Scholar
- .Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Reprint Chelsea Publishing Company, New York (1955)Google Scholar
- .Hochstadt, H.: The Functions of Mathematical Physics. Wiley-Intersciences, New York (1971)zbMATHGoogle Scholar
- .Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Vienna/New York (2005)Google Scholar
- .Ivanow, V.K.: Higher-dimensional generalization of the Euler summation formula (Russian). Izv. Vuz. Mat. 6(37), 72–80 (1963)Google Scholar
- .Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)Google Scholar
- .James, R.W.: The Adams and Elsasser dynamo integrals. Proc. R. Soc. Lond. A 331, 469 (1973)Google Scholar
- .James, R.W.: The spectral form of the magnetic induction equation. Proc. R. Soc. Lond. A 340, 287 (1974)Google Scholar
- .James, R.W.: New tensor spherical harmonics, for application to the partial differential equations of mathematical physics. Philos. Trans. R. Soc. Lond. A 281, 195–221 (1976)zbMATHGoogle Scholar
- .Jänich, K.: Vektoranalysis, 5th edn. Springer, Berlin/Heidelberg (2004)Google Scholar
- .Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics. Academic, London (1977)zbMATHGoogle Scholar
- .Jones, N.M.: Spherical Harmonics and Tensors for Classical Field Theory. Research Studies Press/Wiley, New York (1985)zbMATHGoogle Scholar
- .Kaula, W.M.: Theory of Satellite Geodesy. Blaisdell Company, Waltham (1966)Google Scholar
- .Kellogg, O.D.: Foundations of Potential Theory. Frederick Ungar Publishing Company, New York (1929)Google Scholar
- .Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)zbMATHGoogle Scholar
- .Knopp, K.: Funktionentheorie II. Sammlung Göschen, Bd. 703. Walter de Gruyter & Co, Berlin (1971)Google Scholar
- .Knops, R.J., Payne, L.E.: Uniqueness Theorems in Linear Elasticity. Springer, Berlin (1971)zbMATHGoogle Scholar
- .Kotsiaris, S., Olsen, N.: The geomagnetic field gradient tensor. Int. J. Geomath. 3(2), 297–314 (2012)Google Scholar
- .Krätzel, E.: Lattice Points. Kluwer Academic, Dordrecht/Boston/London (1988)zbMATHGoogle Scholar
- .Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)zbMATHGoogle Scholar
- .Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program for Scientific Translations, Jerusalem (1965)zbMATHGoogle Scholar
- .Lai, M., Krempl, E., Ruben, D.: Introduction to Continuum Mechanics, 4th edn. Elsevier, Amsterdam (2010)Google Scholar
- .Laín Fernández, N., Prestin, J.: Localization of the spherical Gauß-Weierstrass kernel. In: Bojanov, B.D. (ed.) Constructive Theory of Functions, pp. 267–274. DA2BA, Sofia (2003)Google Scholar
- .Lamp, U., Schleicher, K.-T., Wendland, W.L.: The fast Fourier transform and the numerical solution of one-dimensional boundary integral equations. Numer. Math. 47, 15–38 (1985)MathSciNetzbMATHGoogle Scholar
- .Landau, E.: Über die Gitterpunkte in einem Kreise. I. Nachr. v. d. Gesellschaft d. Wiss. zu Göttingen, Math.-Phys. Klasse 148–160 (1915)Google Scholar
- .Landau, E.: Vorlesungen über Zahlentheorie. Chelsea Publishing Compagny, New York (1969) (reprint from the orignal version published by S. Hirzel, Leipzig (1927))zbMATHGoogle Scholar
- .Landau, E.: Ausgewählte Abhandlungen zur Gitterlehre. VEB, Berlin (1962)Google Scholar
- .Landau, L.D., Lifshitz, L.M.: Quantum Mechanics. Course of Theoretical Physics, vol. 3, 3rd edn. Elsevier, Amsterdam (2004)Google Scholar
- .Lebedev, N.N.: Spezielle Funktionen und ihre Anwendungen. Bibliographisches Institut, Mannheim (1973)Google Scholar
- .Leis, R.: Vorlesungen über partielle Differentialgleichungen zweiter Ordnung. BI-Hochschultaschenbücher, 165/165a, Bibliographisches Institut, Mannheim (1967)Google Scholar
- .Lekkerkerker, C.G.: Geometry of Numbers. North Holland, Amsterdam/London (1969)zbMATHGoogle Scholar
- .Lense, J.: Kugelfunktionen. Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, vol. 23. Akademie Verlagsgesellschaft, Leipzig (1954)Google Scholar
- .Lesieur, M.: Turbulence in Fluids, Third Revised and Enlarged Edition. Kluwer Academic, Dordrecht/Boston/London (1997)zbMATHGoogle Scholar
- .Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8(6), 535–563 (2002)MathSciNetzbMATHGoogle Scholar
- .Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)zbMATHGoogle Scholar
- .Lurje, A.: Räumliche Probleme der Elastizitätstheorie. Akademie Verlag, Berlin (1963)zbMATHGoogle Scholar
- .Maclaurin, C.: A Treatise of Fluxions. Edinburgh (1742)Google Scholar
- .Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 52, 3rd edn. Springer, Berlin (1966)Google Scholar
- .Maier, T.: Multiscale geomagnetic field modedlling from satellite data. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2003)Google Scholar
- .Maier, T.: Wavelet Mie representations for solenoidal fields with applications to ionospheric geomagnetic data. SIAM J. Appl. Math. 65(6), 1888–1912 (2005)MathSciNetzbMATHGoogle Scholar
- .Marion, M., Teman, R.: Non-linear Galerkin methods. SIAM J. Numer. Anal. 26(5), 1139–1157 (1989)MathSciNetzbMATHGoogle Scholar
- .Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1994)Google Scholar
- .Martensen, E.: Potentialtheorie. Leitfäden der Angewandten Mathematik und Mechanik, Bd. 12. Teubner, Leipzig (1968)Google Scholar
- .Mayer, C.: Wavelet modelling of ionospheric currents and induced magnetic fields from satellite data. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2003)Google Scholar
- .Messiah, A.: Quantenmechanik. Walter de Gruyter. Berlin/New York (1990)Google Scholar
- .Michel, V.: A multiscale method for the gravimetry Problem—theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 1999Google Scholar
- .Michel, V.: Tomography: Problems and Multiscale Solutions. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, pp. 949–972. Springer, Berlin/Heidelberg (2010)Google Scholar
- .Michel, V.: Lectures on Constructive Approximation—Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser, Boston (2012)Google Scholar
- .Michlin, S.G.: Mathematical Physics, an Advanced Course. North Holland, Amsterdam/London (1970)Google Scholar
- .Michlin, S.G.: Lehrgang der Mathematischen Physik, 2nd edn. Akademie Verlag, Berlin (1975)zbMATHGoogle Scholar
- .Miranda, C.: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970)zbMATHGoogle Scholar
- .Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco (1973)Google Scholar
- .Mochizuki, E.: Spherical harmonic development of an elastic tensor. Geophys. J. Int. 93(3), 521–526 (1988)MathSciNetzbMATHGoogle Scholar
- .Moisil, G.C., Teodorescu, N.: Fonctions holomorphes dans l’espace. Mathematica (Cluj) 5, 142–159 (1931)Google Scholar
- .Mordell, L.J.: Poisson’s summation formula in several variables and some applications to the theory of numbers. Math. Proc. Camb. 25, 412–420 (1928)Google Scholar
- .Mordell, L.J.: Poisson’s summation formula and the Riemann Zeta function. J. Lond. Math. Soc. 4, 285–296 (1929)MathSciNetzbMATHGoogle Scholar
- .Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)zbMATHGoogle Scholar
- .Müller, C.: Über die ganzen Lösungen der Wellengleichung (nach einem Vortrag von G. Herglotz). Math. Ann. 124, 235–264 (1952)Google Scholar
- .Müller, C: Eine Verallgemeinerung der Eulerschen Summenformel und ihre Anwendung auf Fragen der analytischen Zahlentheorie. Abh. Math. Sem. Univ. Hamburg 19, 41–61 (1954)MathSciNetzbMATHGoogle Scholar
- .Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)Google Scholar
- .Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)zbMATHGoogle Scholar
- .Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Springer, New York/Berlin/ Heidelberg (1998)zbMATHGoogle Scholar
- .Müller, C., Dressler, A.: Über eine gewichtete Mittelung der Gitterpunkte in der Ebene. J. Reine Angew. Math. 252, 82–87 (1972)MathSciNetzbMATHGoogle Scholar
- .Nashed, M.Z.: On moment-discretization and least-squares solutions of linear integral equations of the first kind. J. Math. Anal. Appl. 53, 359–366 (1976a)MathSciNetzbMATHGoogle Scholar
- .Nashed, M.Z.: Generalized Inverses and Applications. Academic, New York (1976b)zbMATHGoogle Scholar
- .Nashed, M.Z., Whaba, G.: Generalized inverses in reproducing kernel spacxes: an approach to regularization of linear operator equations. SIAM J. Math. Anal. 5, 974–987 (1974)MathSciNetGoogle Scholar
- .Nashed, M.Z.: Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory. IEEE Trans. Antenn. Propag. 29, 220–231 (1981)MathSciNetGoogle Scholar
- .Newton, I.: Philosophiæ Naturalis Principia Mathematica, vol. 3, De Munde Systemate (1687)Google Scholar
- .Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Method. SIAM, Philadelphia (1992)Google Scholar
- .Nielsen, N.: Handbuch der Theorie der Gammafunktion. Teubner, Leipzig (1906)Google Scholar
- .Niemeyer, H.: Lokale und asympotische Eigenschaften der Lösung der Helmholtzschen Schwingungsgleichung. Jahresbericht d. DMV 65, 1–44 (1962)MathSciNetzbMATHGoogle Scholar
- .Nijboer, B.R.A., de Wette, F.W.: On the calculation of lattice sums. Physica 23, 309–321 (1957)MathSciNetzbMATHGoogle Scholar
- .Norbury, J., Roulstone, I.: Large-Scale Atmospere-Ocean Dynamics I. Analytic Methods and Numerical Methods. Cambridge University Press, Cambridge (2002a)Google Scholar
- .Norbury, J., Roulstone, I.: Large-Scale Atmospere-Ocean Dynamics II, Geometric Methods and Models. Cambridge University Press, Cambridge (2002b)Google Scholar
- .Nutz, H.: A unified setup of gravitational field observables. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern, Shaker, Aachen, 2002Google Scholar
- .Ostermann, I.: Modeling heat transport in deep geothermal systems by radial basis functions. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (2011)Google Scholar
- .Pail, R., Plank, G.: Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J. Geod. 76, 462–474 (2002)zbMATHGoogle Scholar
- .Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill, New York (2002)Google Scholar
- .Pedlowsky, J.: Geophysical Fluid Dynamics. Springer, New York/Heidelberg/Berlin (1979)Google Scholar
- .Qian, T., Hempfling, T., McIntosh, A., Sommen, F. (eds.): Advances in Analysis and Geometry: New Developments Using Clifford Algebras. Trends in Mathematics. Birkhäuser, Basel (2004)zbMATHGoogle Scholar
- .Rademacher, H.: Topics in Analytic Number Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 169. Springer, Berlin/Heidelberg/New York (1973)Google Scholar
- .Rakhmanov, E.A., Saff, E.B., Zhou Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)MathSciNetzbMATHGoogle Scholar
- .Reed, M., Simon, B.: Functional Analysis I. Academic, New York (1972)Google Scholar
- .Reuter, R.: Über Integralformeln der Einheitssphäre und harmonische Splinefunktionen. Ph.D. thesis, Veröff. Geod. Inst. RWTH Aachen, Report No. 33, 1982Google Scholar
- .Richter, L.: Über die Inversion einer Legendreschen Integraltransformation und ihre Anwendung. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, 1971Google Scholar
- .Rieder, A.: Keine Probleme mit inversen Problemen. Vieweg, Wiesbaden (2003)zbMATHGoogle Scholar
- .Rivlin, T.J.: Chebychev Polynomials, 2nd edn. Wiley, New York (1990)Google Scholar
- .Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)MathSciNetzbMATHGoogle Scholar
- .Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York/London/Sydney (1957)zbMATHGoogle Scholar
- .Rudin, W.: Functional Analysis. McGraw-Hill, Boston (1991)zbMATHGoogle Scholar
- .Rummel, R., van Gelderen, M.: Spectral analysis of the full gravity tensor. Geophys. J. Int. 111, 159–169 (1992)Google Scholar
- .Rvachev, V.A.: Compactly supported solutions of functional-differential equations and their applications. Russ. Math. Surv. 45, 87–120 (1990)MathSciNetzbMATHGoogle Scholar
- .Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)MathSciNetzbMATHGoogle Scholar
- .Sard, A.: Best approximate integration formulas. Am. J. Math. 71, 80–91 (1949)MathSciNetzbMATHGoogle Scholar
- .Sauter, S.A.: Der Aufwand der Panel-Clustering-Methode für Integralgleichungen. Technical Report 9115, Institute for Computer Science and Applied Mathematics, University of Kiel (1991)Google Scholar
- .Schaeben, H., van den Boogaart, K.G.: Spherical harmonics in texture analysis. Tectonophysics 370, 253–268 (2003)Google Scholar
- .Schmidt, K.E., Lee, M.A.: Implementing the fast multipole method in three dimensions. J. Stat. Phys. 63 1223–1235 (1991)Google Scholar
- .Schoenberg, I.J.: On trigonometric spline interpolation. J. Math. Mech. 13, 795–825 (1964)MathSciNetzbMATHGoogle Scholar
- .Schreiner, M.: Tensor spherical harmonics and their application in satellite gradiometry. Ph.D. thesis, Geomathematics Group, TU Kaiserslautern (1994)Google Scholar
- .Schulten, K., Gordon, R.G.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum-mechanical coupling of angular momentum. J. Math. Phys. 16(10), 1961–1970 (1975)MathSciNetGoogle Scholar
- .Schulten, K., Gordon, R.G.: Recursive evaluation of 3j and 6j coefficients. Comput. Phys. Commun. 11, 269–278 (1976)Google Scholar
- .Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)zbMATHGoogle Scholar
- .Shore, B.W., Menzel, D.H.: Principles of Atomic Spectra. Wiley, New York/London/Sydney (1968)Google Scholar
- .Sieber, N., Sebastian, H.-J.: Spezielle Funktionen, 3rd edn. B.G. Teubner, Leipzig (1988)zbMATHGoogle Scholar
- .Sneddon, I.N.: Special Functions of Mathematical Physics and Chemistry, 3rd edn. Longman, New York (1980)zbMATHGoogle Scholar
- .Sneeuw, N.: A semi-analytical approach to gravity field analysis from satellite observations. Ph.D. thesis, TU Munich, Deutsche Geodätische Kommission, Reihe A, 527 (2000)Google Scholar
- .Sommerfeld, A.: Partielle Differentialgleichnugen der Physik, 6th edn. Akademische Verlagsgesellschaft, Leipzig (1966)Google Scholar
- .Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)zbMATHGoogle Scholar
- .Strubecker, K.: Differentialgeometrie I, II. Sammlung Göschen, de Gruyter, Berlin (1964)Google Scholar
- .Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Rhode Island (1967)Google Scholar
- .Teman, R.: Navier–Stokes Equations: Theory and Numerical Analyis. North-Holland, Amsterdam/Newyork/Oxford (1979)Google Scholar
- .Teman, R.: Navier–Stokes Equations and Non-Linear Functional Analysis. SIAM, Philadelphia (1983)Google Scholar
- .Thomson, K.: Generalized Spiral Points: Further Improvement. https://groups.google.com/d/topic/sci.math/CYMQX7HO1Cw/discussion (2007). Cited 17 Jul 2012.
- .Tichy, R.F.: Ein Approximationsverfahren zur Lösung spezieller partieller Differentialgleichungen. ZAMM. 68, 187–188 (1988)MathSciNetzbMATHGoogle Scholar
- .Tichy, R.F.: Random points in the cube and on the sphere with applications to numerical analysis. J. Comput. Appl. Math. 31(1), 191–197 (1990)MathSciNetzbMATHGoogle Scholar
- .Titchmarsh, E.C.: The Theory of Riemann Zeta-Function. Clarendon, Oxford (1951)zbMATHGoogle Scholar
- .Torge, W.: Geodesy, 3rd edn. de Gruyter, Berlin (2001)Google Scholar
- .Tscherning, C.C.: Computation of the second-order derivatives of the normal potential based on the representation by a Legendre series. Manusc. Geodaet. 1, 71–92 (1976)Google Scholar
- .Tscherning, C.C.: Isotropic reproducing kernels for the inner of a sphere or spherical shell and their use as density covariance functions. Math. Geol. 28, 161–168 (1996)MathSciNetzbMATHGoogle Scholar
- .van der Corput, B.L.: Verteilungsfunktionen I. Proc. Nederl. Akad. Wetensch. 38, 813–821 (1935a)Google Scholar
- .van der Corput, B.L.: Verteilungsfunktionen II. Proc. Nederl. Akad. Wetensch. 38, 1058–1066 (1935b)Google Scholar
- .van der Waerden, B.L.: Mathematical Statistics. Springer, Heidelberg (1969)zbMATHGoogle Scholar
- .Vars̆alovic̆, D.A., Moskalev, A.N., Chersonskij, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)Google Scholar
- .Vilenkin, N.J.: Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, vol. 22. American Mathematical Society, Providence (1968)Google Scholar
- .Wahba, G.: Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat. Comp. 2, 5–16 (1981) (also errata: SIAM J. Sci. Stat. Comp. 3, 385–386 (1982))Google Scholar
- .Walfisz, A.: Gitterpunkte in mehrdimensionalen Kugeln. Acta Arith. 6, 115–136, 193–215 (1960)MathSciNetGoogle Scholar
- .Wangerin, A.: Theorie des Potentials und der Kugelfunktionen (I,II). de Gruyter, Leipzig (1921)Google Scholar
- .Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)zbMATHGoogle Scholar
- .Weyl, H.: The Theory of Groups and Quantum Mechanics. E.P. Dutton, New York (1931)zbMATHGoogle Scholar
- .Wienholtz, E., Kalf, H., Kriecherbauer, T.: Elliptische Differentialgleichungen zweiter Ordnung. Springer, Heidelberg (2009)zbMATHGoogle Scholar
- .Wienkamp, R.: Über eine Klasse verallgemeinerter Zetafunktionen. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen (1958)Google Scholar
- .White, C.A., Head-Gordon, M.: Rotating around the quartic angular momentum barrier in fast multipole method calculations. J. Chem. Phys. 105(12), 5061–5067 (1996)Google Scholar
- .Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1948)Google Scholar
- .Xu, C., Sneeuw, N., Sideris, M.G.: The torus approach in spaceborne gravimetry. In: Xu, P., Liu, J., Dermanis, A. (eds.) IAG Symposium, vol. 132, pp. 23–28. Springer, Heidelberg (2008)Google Scholar
- .Yoshida, K.: Functional Analysis. Springer, Berlin (1980)Google Scholar
- .Zare, R.N.: Angular Momentum. Wiley-Interscience, New York (1988)Google Scholar