Skip to main content

Structure–Function Relationships of Antimicrobial Chemokines

  • Chapter
  • First Online:
Antimicrobial Peptides and Innate Immunity

Abstract

The chemokines are a group of small chemotactic cytokines that play an important role in the innate and adaptive immune system. Their main function is related to the recruitment of white blood cells to sites of infection. They bind to specific chemokine receptors, which subsequently triggers signaling pathways in the leukocytes. Recently the discovery of chemokines that possess a direct antimicrobial activity against a broad range of pathogenic bacteria has generated increased interest in the role of these proteins in the innate immune system. Prior studies regarding ligand and receptor binding have already established the structural elements important for chemokine interaction and activation of their receptors. In the same manner, it is important to study the structural features required for the antimicrobial activity of this group of chemokines in order to establish key elements related with this new activity. This review will focus on the structure–function relationships that appear to be related to the direct antimicrobial activity of the chemokines. A close similarity of the C-terminal domain of many chemokines to cationic α-helical antimicrobial peptides suggests that this C-terminal helical region is responsible for the chemokine antimicrobial activity. However, for several chemokines, the antimicrobial activity resides in other parts of the protein, indicating that each chemokine needs to be examined individually. We also discuss the role of dimerization and of linearization of chemokines in their antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPs:

Antimicrobial peptides

CA-MRSA:

Community-associated methicillin-resistant Staphylococcus aureus

CTAP-3:

Connective tissue-activating protein-3

DC:

Dendritic cells

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

DOPG:

1,2-Dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)

ENA-78:

Epithelial neutrophil-activating protein 78

GCP-2:

Granulocyte chemotactic protein-2

GRO:

Growth-regulated oncogene

hBD:

Human beta-defensin

IL-8:

Interleukin-8

IP-10:

Interferon-inducible protein-10

I-TAC:

Interferon-inducible T-cell alpha chemoattractant

LDL:

Low-density lipoprotein

MCP-4:

Monocyte chemoattractant protein-4

MEC:

Mucosa-associated epithelial chemokine

MIG:

Monokine induced IFN-gamma

MIP-3α:

Human macrophage inflammatory protein-3α

NAP-2:

Neutrophil-activating peptide-2

NMR:

Nuclear magnetic resonance

PBP:

Platelet basic protein

PF-4:

Platelet factor-4

PG-1:

Protegrin-1

PGLa:

Peptidyl-glycylleucine-carboxyamide

PMP:

Platelet microbicidal protein

RANTES:

Regulated upon activation normal T-cell expressed and secreted

SDS:

Sodium dodecyl sulfate

SIC:

Streptococcal inhibitor of complement

SPA:

Staphylococcal protein A

SpyCEP:

Streptococcus pyogenes cell envelope proteinase

References

  • Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25(1):787–820. doi:10.1146/annurev.immunol.24.021605.090529

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam D (1996) Susceptibility testing of antimicrobial in liquid media. Antibiotics in laboratory medicine, 4th edn. Williams and Wilkins, Baltimore, MA, pp 61–143

    Google Scholar 

  • Baggiolini M, Walz A, Kunkel SL (1989) Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 84(4):1045–1049

    Article  PubMed  CAS  Google Scholar 

  • Baldwin ET, Weber IT, St Charles R, Xuan JC, Appella E, Yamada M, Matsushima K, Edwards BF, Clore GM, Gronenborn AM (1991) Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc Natl Acad Sci USA 88(2):502–506

    Article  PubMed  CAS  Google Scholar 

  • Barinka C, Prahl A, Lubkowski J (2008) Structure of human monocyte chemoattractant protein 4 (MCP-4/CCL13). Acta Crystallogr D Biol Crystallogr 64(3):273–278. doi:10.1107/S0907444907066164

    Article  PubMed  CAS  Google Scholar 

  • Batista CVF, Scaloni A, Rigden DJ, Silva LR, Rodrigues RA, Dukor R, Sebben A, Talamo F, Bloch C (2001) A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett 494(1–2):85–89

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Quay J, Koren HS, Haskill JS (1994) Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages. Am J Physiol Lung Cell Mol Physiol 266(3):L278–L286

    CAS  Google Scholar 

  • Bizzarri C, Beccari AR, Bertini R, Cavicchia MR, Giorgini S, Allegretti M (2006) ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new therapeutic targets. Pharmacol Ther 112(1):139–149

    Article  PubMed  CAS  Google Scholar 

  • Bjorstad A, Fu H, Karlsson A, Dahlgren C, Bylund J (2005) Interleukin-8-derived peptide has antibacterial activity. Antimicrob Agents Chemother 49(9):3889–3895. doi:10.1128/aac.49.9.3889-3895.2005

    Article  PubMed  CAS  Google Scholar 

  • Bolintineanu D, Hazrati E, Davis HT, Lehrer RI, Kaznessis YN (2010) Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides 31(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Bonecchi R, Bianchi G, Bordignon PP, D’Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187(1):129–134. doi:10.1084/jem.187.1.129

    Article  PubMed  CAS  Google Scholar 

  • Booth V, Clark-Lewis I, Sykes BD (2004) NMR structure of CXCR3 binding chemokine CXCL11 (ITAC). Protein Sci 13(8):2022–2028

    Article  PubMed  CAS  Google Scholar 

  • Booth V, Keizer DW, Kamphuis MB, Clark-Lewis I, Sykes BD (2002) The CXCR3 binding chemokine IP-10/CXCL10: structure and receptor interactions. Biochemistry 41(33):10418–10425

    Article  PubMed  CAS  Google Scholar 

  • Bourbigot S, Fardy L, Waring AJ, Yeaman MR, Booth V (2009) Structure of chemokine-derived antimicrobial peptide interleukin-8a and interaction with detergent micelles and oriented lipid bilayers. Biochemistry 48(44):10509–10521

    Article  PubMed  CAS  Google Scholar 

  • Brandt E, Petersen F, Flad HD (1993) A novel molecular variant of the neutrophil-activating peptide NAP-2 with enhanced biological activity is truncated at the C-terminus: identification by antibodies with defined epitope specificity. Mol Immunol 30(11):979–991

    Article  PubMed  CAS  Google Scholar 

  • Brandt E, Petersen F, Ludwig A, Ehlert JE, Bock L, Flad HD (2000) The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. J Leukoc Biol 67(4):471–478

    PubMed  CAS  Google Scholar 

  • Brandt E, Van Damme J, Flad H-D (1991) Neutrophils can generate their activator neutrophil-activating peptide 2 by proteolytic cleavage of platelet-derived connective tissue-activating peptide III. Cytokine 3(4):311–321

    Article  PubMed  CAS  Google Scholar 

  • Car BD, Baggiolini M, Walz A (1991) Formation of neutrophil-activating peptide 2 from platelet-derived connective-tissue-activating peptide III by different tissue proteinases. Biochem J 275(3):581–584

    PubMed  CAS  Google Scholar 

  • Clark-Lewis I, Dewald B, Geiser T, Moser B, Baggiolini M (1993) Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci USA 90(8):3574–3577

    Article  PubMed  CAS  Google Scholar 

  • Clark-Lewis I, Kim KS, Rajarathnam K, Gong JH, Dewald B, Moser B, Baggiolini M, Sykes BD (1995) Structure-activity relationships of chemokines. J Leukoc Biol 57(5):703–711

    PubMed  CAS  Google Scholar 

  • Clark-Lewis I, Schumacher C, Baggiolini M, Moser B (1991) Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem 266(34):23128–23134

    PubMed  CAS  Google Scholar 

  • Clore GM, Appella E, Yamada M, Matsushima K, Gronenborn AM (1989) Determination of the secondary structure of interleukin-8 by nuclear magnetic resonance spectroscopy. J Biol Chem 264(32):18907–18911

    PubMed  CAS  Google Scholar 

  • Clore GM, Appella E, Yamada M, Matsushima K, Gronenborn AM (1990) Three-dimensional structure of interleukin 8 in solution. Biochemistry 29(7):1689–1696

    Article  PubMed  CAS  Google Scholar 

  • Cohen AB, Stevens MD, Miller EJ, Atkinson MA, Mullenbach G (1992) Generation of the neutrophil-activating peptide-2 by cathepsin G and cathepsin G-treated human platelets. Am J Physiol Lung Cell Mol Physiol 263(2):L249–L256

    CAS  Google Scholar 

  • Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM (2001) Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J Immunol 167(2):623–627

    PubMed  CAS  Google Scholar 

  • Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K (1998) Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187(12):2009–2021. doi:10.1084/jem.187.12.2009

    Article  PubMed  CAS  Google Scholar 

  • Collin M, Linge HM, Bjartell A, Giwercman A, Malm J, Egesten A (2008) Constitutive expression of the antibacterial CXC chemokine GCP-2/CXCL6 by epithelial cells of the male reproductive tract. J Reprod Immunol 79(1):37–43

    Article  PubMed  CAS  Google Scholar 

  • Crawford MA, Zhu Y, Green CS, Burdick MD, Sanz P, Alem F, O’Brien AD, Mehrad B, Strieter RM, Hughes MA (2009) Antimicrobial effects of interferon-inducible CXC chemokines against Bacillus anthracis spores and bacilli. Infect Immun 77(4):1664–1678. doi:10.1128/iai.01208-08

    Article  PubMed  CAS  Google Scholar 

  • Crown SE, Yu Y, Sweeney MD, Leary JA, Handel TM (2006) Heterodimerization of CCR2 chemokines and regulation by glycosaminoglycan binding. J Biol Chem 281(35):25438–25446. doi:10.1074/jbc.M601518200

    Article  PubMed  CAS  Google Scholar 

  • Chan DI, Hunter HN, Tack BF, Vogel HJ (2008) Human macrophage inflammatory protein 3a: protein and peptide nuclear magnetic resonance solution structures, dimerization, dynamics, and anti-infective properties. Antimicrob Agents Chemother 52(3):883–894. doi:10.1128/aac.00805-07

    Article  PubMed  CAS  Google Scholar 

  • Dalla Serra M, Cirioni O, Vitale RM, Renzone G, Coraiola M, Giacometti A, Potrich C, Baroni E, Guella G, Sanseverino M, De Luca S, Scalise G, Amodeo P, Scaloni A (2008) Structural features of distinctin affecting peptide biological and biochemical properties. Biochemisty 47(30):7888–7899

    Article  CAS  Google Scholar 

  • Dankert J, Krijgsveld J, van der Werff J, Joldersma W, Zaat Sebastian AJ (2001) Platelet microbicidal activity is an important defense factor against Viridans streptococcal endocarditis. J Infect Dis 184(5):597–605. doi:10.1086/322802

    Article  PubMed  CAS  Google Scholar 

  • Darveau RP, Blake J, Seachord CL, Cosand WL, Cunningham MD, Cassiano-Clough L, Maloney G (1992) Peptides related to the carboxyl terminus of human platelet factor IV with antibacterial activity. J Clin Invest 90(2):447–455

    Article  PubMed  CAS  Google Scholar 

  • Dempsey CE, Ueno S, Avison MB (2002) Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry 42(2):402–409

    Article  CAS  Google Scholar 

  • Deuel TF, Keim PS, Farmer M, Heinrikson RL (1977) Amino acid sequence of human platelet factor 4. Proc Natl Acad Sci USA 74(6):2256–2258

    Article  PubMed  CAS  Google Scholar 

  • Edwards RJ, Taylor GW, Ferguson M, Murray S, Rendell N, Wrigley A, Bai Z, Boyle J, Finney Simon J, Jones A, Russell Hugh H, Turner C, Cohen J, Faulkner L, Sriskandan S (2005) Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. J Infect Dis 192(5):783–790. doi:10.1086/432485

    Article  PubMed  CAS  Google Scholar 

  • Egesten A, Eliasson M, Johansson Helena M, Olin Anders I, Morgelin M, Mueller A, Pease James E, Frick I-M, Bjorck L (2007) The CXC chemokine MIG/CXCL9 is important in innate immunity against Streptococcus pyogenes. J Infect Dis 195(5):684–693. doi:10.1086/510857

    Article  PubMed  CAS  Google Scholar 

  • Egesten A, Olin AI, Linge HM, Yadav M, Morgelin M, Karlsson A, Collin M (2009) SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS One 4(3):e4769

    Article  PubMed  CAS  Google Scholar 

  • Ehlert JE, Gerdes J, Flad H-D, Brandt E (1998) Novel C-terminally truncated isoforms of the CXC chemokine b-thromboglobulin and their impact on neutrophil functions. J Immunol 161(9):4975–4982

    PubMed  CAS  Google Scholar 

  • Ehlert JE, Petersen F, Kubbutat MHG, Gerdes J, Flad H-D, Brandt E (1995) Limited and defined truncation at the C terminus enhances receptor binding and degranulation activity of the neutrophil-activating peptide 2 (NAP-2). J Biol Chem 270(11):6338–6344. doi:10.1074/jbc.270.11.6338

    Article  PubMed  CAS  Google Scholar 

  • Eliasson M, Egesten A (2008) Antibacterial chemokines - actors in both innate and adaptive immunity. In: Egesten A, Schmidt A, Herwald H (eds) Trends in innate immunity, vol 15. Karger Publisher, Basel, pp 101–117. doi:10.1159/000136317

    Chapter  Google Scholar 

  • Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462(1–2):11–28

    PubMed  CAS  Google Scholar 

  • Farber JM (1993) HuMig: a new human member of the chemokine family of cytokines. Biochem Biophys Res Commun 192(1):223–230

    Article  PubMed  CAS  Google Scholar 

  • Farber JM (1997) Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 61(3):246–257

    PubMed  CAS  Google Scholar 

  • Fillmore RA, Nelson SE, Lausch RN, Oakes JE (2003) Differential regulation of ENA-78 and GCP-2 gene expression in human corneal keratocytes and epithelial cells. Invest Ophthalmol Vis Sci 44(8):3432–3437. doi:10.1167/iovs.03-0095

    Article  PubMed  Google Scholar 

  • Flad H-D, Brandt E (2010) Platelet-derived chemokines: pathophysiology and therapeutic aspects. Cell Mol Life Sci 67(14):2363–2386

    Article  PubMed  CAS  Google Scholar 

  • Frick I-M, Akesson P, Rasmussen M, Schmidtchen A, Bjorck L (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278(19):16561–16566. doi:10.1074/jbc.M301995200

    Article  PubMed  CAS  Google Scholar 

  • Froyen G, Proost P, Ronsse I, Mitera T, Haelens A, Wuyts A, Opdenakker G, van Damme J, Billiau A (1997) Cloning, bacterial expression and biological characterization of recombinant human granulocyte chemotactic protein-2 and differential expression of granulocyte chemotactic protein-2 and epithelial cell-derived neutrophil activating peptide-78 mRNAs. Eur J Biochem 243(3):762–769

    Article  PubMed  CAS  Google Scholar 

  • Fujiie S, Hieshima K, Izawa D, Nakayama T, Fujisawa R, Ohyanagi H, Yoshie O (2001) Proinflammatory cytokines induce liver and activation-regulated chemokine/macrophage inflammatory protein-3a/CCL20 in mucosal epithelial cells through NF-kB. Int Immunol 13(10):1255–1263. doi:10.1093/intimm/13.10.1255

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Zepeda EA, Combadiere C, Rothenberg ME, Sarafi MN, Lavigne F, Hamid Q, Murphy PM, Luster AD (1996) Human monocyte chemoattractant protein (MCP)-4 is a novel CC chemokine with activities on monocytes, eosinophils, and basophils induced in allergic and nonallergic inflammation that signals through the CC chemokine receptors (CCR)-2 and −3. J Immunol 157(12):5613–5626

    PubMed  CAS  Google Scholar 

  • Ghosh M, Shen Z, Schaefer TM, Fahey JV, Gupta P, Wira CR (2009) CCL20/MIP3α is a novel anti-HIV-1 molecule of the human female reproductive tract. Am J Reprod Immunol 62(1):60–71

    Article  PubMed  CAS  Google Scholar 

  • Gijsbers K, Van Assche G, Joossens S, Struyf S, Proost P, Rutgeerts P, Geboes K, Van Damme J (2004) CXCR1-binding chemokines in inflammatory bowel diseases: down-regulated IL-8/CXCL8 production by leukocytes in Crohn’s disease and selective GCP-2/CXCL6 expression in inflamed intestinal tissue. Eur J Immunol 34(7):1992–2000

    Article  PubMed  CAS  Google Scholar 

  • Haney EF, Hunter HN, Matsuzaki K, Vogel HJ (2009a) Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim Biophys Acta 1788(8):1639–1655

    Article  PubMed  CAS  Google Scholar 

  • Haney EF, Lau F, Vogel HJ (2007) Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin. Biochim Biophys Acta 1768(10):2355–2364

    Article  PubMed  CAS  Google Scholar 

  • Haney EF, Nazmi K, Lau F, Bolscher JGM, Vogel HJ (2009b) Novel lactoferrampin antimicrobial peptides derived from human lactoferrin. Biochimie 91(1):141–154

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Mitani Y, Tanaka K, Uematsu N, Takakura A, Tachi T, Kodama H, Kondo M, Mori H, Otaka A, Nobutaka F, Matsuzaki K (2001) Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: A cross-linking study. Biochemistry 40(41):12395–12399

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder J-M (2001) Isolation and characterization of human defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276(8):5707–5713. doi:10.1074/jbc.M008557200

    Article  PubMed  CAS  Google Scholar 

  • Harter L, Petersen F, Flad HD, Brandt E (1994) Connective tissue-activating peptide III desensitizes chemokine receptors on neutrophils. Requirement for proteolytic formation of the neutrophil-activating peptide 2. J Immunol 153(12):5698–5708

    PubMed  CAS  Google Scholar 

  • Hasan L, Mazzucchelli L, Liebi M, Lis M, Hunger RE, Tester A, Overall CM, Wolf M (2006) Function of liver activation-regulated chemokine/CC chemokine ligand 20 is differently affected by cathepsin B and cathepsin D processing. J Immunol 176(11):6512–6522

    PubMed  CAS  Google Scholar 

  • Hensbergen PJ, Verzijl D, Balog CIA, Dijkman R, van der Schors RC, van der Raaij-Helmer EMH, van der Plas MJA, Leurs R, Deelder AM, Smit MJ, Tensen CP (2004) Furin is a chemokine-modifying enzyme. J Biol Chem 279(14):13402–13411. doi:10.1074/jbc.M312814200

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo-Grass C, Mishalian I, Dan-Goor M, Belotserkovsky I, Eran Y, Nizet V, Peled A, Hanski E (2006) A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J 25(19):4628–4637

    Article  PubMed  CAS  Google Scholar 

  • Hieshima K, Ohtani H, Shibano M, Izawa D, Nakayama T, Kawasaki Y, Shiba F, Shiota M, Katou F, Saito T, Yoshie O (2003) CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J Immunol 170(3):1452–1461

    PubMed  CAS  Google Scholar 

  • Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI (1991) Structure and functional expression of a human interleukin-8 receptor. Science 253(5025):1278–1280. doi:10.1126/science.1840701

    Article  PubMed  CAS  Google Scholar 

  • Hoover DM, Boulegue C, Yang D, Oppenheim JJ, Tucker K, Lu W, Lubkowski J (2002) The structure of human macrophage inflammatory protein-3alpha/CCL20. J Biol Chem 277(40):37647–37654. doi:10.1074/jbc.M203907200

    Article  PubMed  CAS  Google Scholar 

  • Hoover DM, Rajashankar KR, Blumenthal R, Puri A, Oppenheim JJ, Chertov O, Lubkowski J (2000) The structure of human b-defensin-2 shows evidence of higher order oligomerization. J Biol Chem 275(42):32911–32918. doi:10.1074/jbc.M006098200

    Article  PubMed  CAS  Google Scholar 

  • Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J (2003) Antimicrobial characterization of human b-defensin 3 derivatives. Antimicrob Agents Chemother 47(9):2804–2809. doi:10.1128/aac.47.9.2804-2809.2003

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto T, Okamoto H, Iikuni N, Takeuchi M, Toyama Y, Tomatsu T, Kamatani N, Momohara S (2006) Monocyte chemoattractant protein-4 (MCP-4)/CCL13 is highly expressed in cartilage from patients with rheumatoid arthritis. Rheumatology (Oxford) 45(4):421–424. doi:10.1093/rheumatology/kei209

    Article  CAS  Google Scholar 

  • Kalayci O, Sonna LA, Woodruff PG, Camargo CA, Luster AD, Lilly CM (2004) Monocyte chemotactic protein-4 (MCP-4; CCL-13): a biomarker of asthma. J Asthma 41(1):27–33. doi:10.1081/JAS-120024590

    Article  PubMed  CAS  Google Scholar 

  • Katancik JA, Sharma A, de Nardin E (2000) Interleukin 8, neutrophil-activating peptide-2 and GRO-alpha bind to and elicit cell activation via specific and different amino acid residues of CXCR2. Cytokine 12(10):1480–1488

    Article  PubMed  CAS  Google Scholar 

  • Kim BE, Leung DYM, Streib JE, Boguniewicz M, Hamid QA, Howell MD (2007) Macrophage inflammatory protein 3a deficiency in atopic dermatitis skin and role in innate immune response to vaccinia virus. J Allergy Clin Immunol 119(2):457–463

    Article  PubMed  CAS  Google Scholar 

  • Kleeff J, Kusama T, Rossi DL, Ishiwata T, Maruyama H, Friess H, Büchler MW, Zlotnik A, Korc M (1999) Detection and localization of MIP-3α/LARC/exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer. Int J Cancer 81(4):650–657

    Article  PubMed  CAS  Google Scholar 

  • Klüver E, Adermann K, Schulz A (2006) Synthesis and structure–activity relationship of β-defensins, multi-functional peptides of the immune system. J Pept Sci 12(4):243–257. doi:10.1002/psc.749

    Article  PubMed  CAS  Google Scholar 

  • Kotarsky K, Sitnik KM, Kotarsky H, Schmidtchen A, Koslowski M, Wehkamp J, Agace WW (2009) A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol 3(1):40–48. doi:10.1038/mi.2009.115

    Article  PubMed  CAS  Google Scholar 

  • Krijgsveld J, Zaat SAJ, Meeldijk J, van Veelen PA, Fang G, Poolman B, Brandt E, Ehlert JE, Kuijpers AJ, Engbers GHM, Feijen J, Dankert J (2000) Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J Biol Chem 275(27):20374–20381. doi:10.1074/jbc.275.27.20374

    Article  PubMed  CAS  Google Scholar 

  • Kwakman PHS, Krijgsveld J, De Boer L, Nguyen LT, Boszhard L, Vreede J, Dekker HL, Speijer D, Drijfhout JW, te Velde AA, Crielaard W, Vogel HJ, Vandenbroucke-Grauls CMJE, Zaat SAJ (2011) Native thrombocidin-1 and unfolded thrombocidin-1 exert antimicrobial activity via distinct structural elements. J Biol Chem 286(50):43506–43514

    Article  PubMed  CAS  Google Scholar 

  • Langham AA, Ahmad AS, Kaznessis YN (2008) On the nature of antimicrobial activity: a model for protegrin-1 pores. J Am Chem Soc 130(13):4338–4346

    Article  PubMed  CAS  Google Scholar 

  • Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197(11):1537–1549. doi:10.1084/jem.20021897

    Article  PubMed  CAS  Google Scholar 

  • Lazzeri E, Romagnani P (2005) CXCR3-binding chemokines: novel multifunctional therapeutic targets. Curr Drug Targets 5(1):109–118

    CAS  Google Scholar 

  • Leach K, Charlton SJ, Strange PG (2007) Analysis of second messenger pathways stimulated by different chemokines acting at the chemokine receptor CCR5. Biochem Pharmacol 74(6):881–890

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Rosenman M, Harwig SSSL, Jackson R, Eisenhauer P (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods 137(2):167–173. doi:10.1016/0022-1759(91)90021-7

    Article  PubMed  CAS  Google Scholar 

  • Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK (2005) Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 8(1):63–71

    Article  PubMed  CAS  Google Scholar 

  • Liao F, Rabin RL, Yannelli JR, Koniaris LG, Vanguri P, Farber JM (1995) Human Mig chemokine: biochemical and functional characterization. J Exp Med 182(5):1301–1314. doi:10.1084/jem.182.5.1301

    Article  PubMed  CAS  Google Scholar 

  • Linge HM, Collin M, Giwercman A, Malm J, Bjartell A, Egesten A (2008a) The antibacterial chemokine MIG/CXCL9 is constitutively expressed in epithelial cells of the male urogenital tract and is present in seminal plasma. J Interferon Cytokine Res 28(3):191–196. doi:10.1089/jir.2007.0100

    Article  PubMed  CAS  Google Scholar 

  • Linge HM, Collin M, Nordenfelt P, Morgelin M, Malmsten M, Egesten A (2008b) The human CXC chemokine granulocyte chemotactic protein 2 (GCP-2)/CXCL6 possesses membrane-disrupting properties and is antibacterial. Antimicrob Agents Chemother 52(7):2599–2607. doi:10.1128/aac.00028-08

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Wilson E (2010) The antimicrobial activity of CCL28 is dependent on C-terminal positively-charged amino acids. Eur J Immunol 40(1):186–196

    Article  PubMed  CAS  Google Scholar 

  • Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B (1996) Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184(3):963–969. doi:10.1084/jem.184.3.963

    Article  PubMed  CAS  Google Scholar 

  • Maerki C, Meuter S, Liebi M, Muhlemann K, Frederick MJ, Yawalkar N, Moser B, Wolf M (2009) Potent and broad-spectrum antimicrobial activity of CXCL14 suggests an immediate role in skin infections. J Immunol 182(1):507–514

    PubMed  CAS  Google Scholar 

  • Malik ZA, Tack BF (2006) Structure of human MIP-3a chemokine. Acta Crystallogr Sect F Struct Biol Cryst Commun 62(7):631–634. doi:10.1107/S1744309106006890

    Article  PubMed  CAS  Google Scholar 

  • Mandal M, Jagannadham MV, Nagaraj R (2002) Antibacterial activities and conformations of bovine [beta]-defensin BNBD-12 and analogs: structural and disulfide bridge requirements for activity. Peptides 23(3):413–418. doi:10.1016/S0196-9781(01)00628-3

    Article  PubMed  CAS  Google Scholar 

  • Mani R, Tang M, Wu X, Buffy JJ, Waring AJ, Sherman MA, Hong M (2006) Membrane-bound dimer structure of a b-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry 45(27):8341–8349

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Becerra F, Silva D-A, Domínguez-Ramírez L, Mendoza-Hernández G, López-Vidal Y, Soldevila G, García-Zepeda EA (2007) Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa. Biochem Biophys Res Commun 355(2):352–358

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Akahoshi T, Namai R, Hashimoto A, Kurihara Y, Rana M, Nishimura A, Endo H, Kitasato H, Kawai S, Takagishi K, Kondo H (2001) Selective recruitment of CCR6-expressing cells by increased production of MIP-3α in rheumatoid arthritis. Clin Exp Immunol 125(1):155–161

    Article  PubMed  CAS  Google Scholar 

  • Matsuo Y, Ochi N, Sawai H, Yasuda A, Takahashi H, Funahashi H, Takeyama H, Tong Z, Guha S (2009) CXCL8/IL-8 and CXCL12/SDF-1α co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int J Cancer 124(4):853–861

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376(3):391–400

    Article  PubMed  CAS  Google Scholar 

  • Mayo KH, Yang Y, Daly TJ, Barry JK, La Rosa GJ (1994) Secondary structure of neutrophil-activating peptide-2 determined by 1 H-nuclear magnetic resonance spectroscopy. Biochem J 304(2):371–376

    PubMed  CAS  Google Scholar 

  • Mihajlovic M, Lazaridis T (2010) Antimicrobial peptides in toroidal and cylindrical pores. Biochim Biophys Acta 1798(8):1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Mine S, Nasu K, Fukuda J, Sun B, Miyakawa I (2003) Secretion of granulocyte chemotactic protein-2 by cultured human endometrial stromal cells. Fertil Steril 79(1):146–150

    Article  PubMed  Google Scholar 

  • Moser B, Letts G, Neote K, Yoshie O (2006) Antimicrobial and related activities of chemokines. In: Parnham MJ (ed) Chemokine biology—basic research and clinical application. Progress in Inflammation Research, Birkhäuser Basel, pp 151–164

    Chapter  Google Scholar 

  • Mueller A, Meiser A, McDonagh EM, Fox JM, Petit SJ, Xanthou G, Williams TJ, Pease JE (2008) CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3. J Leukoc Biol 83(4):875–882. doi:10.1189/jlb.1006645

    Article  PubMed  CAS  Google Scholar 

  • Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52(1):145–176

    PubMed  CAS  Google Scholar 

  • Murphy PM, Tiffany HL (1991) Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253(5025):1280–1283. doi:10.1126/science.1891716

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Fujisawa R, Yamada H, Horikawa T, Kawasaki H, Hieshima K, Izawa D, Fujiie S, Tezuka T, Yoshie O (2001) Inducible expression of a CC chemokine liver- and activation-regulated chemokine (LARC)/macrophage inflammatory protein (MIP)-3a/CCL20 by epidermal keratinocytes and its role in atopic dermatitis. Int Immunol 13(1):95–103. doi:10.1093/intimm/13.1.95

    Article  PubMed  CAS  Google Scholar 

  • Nesmelova IV, Sham Y, Dudek AZ, van Eijk LI, Wu G, Slungaard A, Mortari F, Griffioen AW, Mayo KH (2005) Platelet factor 4 and interleukin-8 CXC chemokine heterodimer formation modulates function at the quaternary structural level. J Biol Chem 280(6):4948–4958

    Article  PubMed  CAS  Google Scholar 

  • Nguyen LT, Chan DI, Boszhard L, Zaat SAJ, Vogel HJ (2010) Structure-function studies of chemokine-derived carboxy-terminal antimicrobial peptides. Biochim Biophys Acta 1798(6):1062–1072

    Article  PubMed  CAS  Google Scholar 

  • Nguyen LT, Kwakman PHS, Chan DI, Liu Z, de Boer L, Zaat SAJ, Vogel HJ (2011) Exploring platelet chemokine antimicrobial activity: NMR backbone dynamics studies of NAP-2 and TC-1. Antimicrob Agents Chemother 55(5):2074–2083. doi:10.1128/AAC.01351-10

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Kunkel EJ, Gosslar U, Lazarus N, Langdon P, Broadwell K, Vierra MA, Genovese MC, Butcher EC, Soler D (2000) Cutting edge: a novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J Immunol 165(6):2943–2949

    PubMed  CAS  Google Scholar 

  • Pazgier M, Hoover D, Yang D, Lu W, Lubkowski J (2006) Human β-defensins. Cell Mol Life Sci 63(11):1294–1313

    Article  PubMed  CAS  Google Scholar 

  • Prause O, Laan M, Lötvall J, Lindén A (2003) Pharmacological modulation of interleukin-17-induced GCP-2-, GRO-a- and interleukin-8 release in human bronchial epithelial cells. Eur J Pharmacol 462(1–3):193–198

    Article  PubMed  CAS  Google Scholar 

  • Proost P, De Wolf-Peeters C, Conings R, Opdenakker G, Billiau A, Van Damme J (1993a) Identification of a novel granulocyte chemotactic protein (GCP-2) from human tumor cells. In vitro and in vivo comparison with natural forms of GRO, IP-10, and IL-8. J Immunol 150(3):1000–1010

    PubMed  CAS  Google Scholar 

  • Proost P, Wuyts A, Conings R, Lenaerts JP, Billiau A, Opdenakker G, Van Damme J (1993b) Human and bovine granulocyte chemotactic protein-2: complete amino acid sequence and functional characterization as chemokines. Biochemistry 32(38):10170–10177

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot AEI (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2(2):106–115

    Article  PubMed  CAS  Google Scholar 

  • Qian YQ, Johanson KO, McDevitt P (1999) Nuclear magnetic resonance solution structure of truncated human GROb [5–73] and its structural comparison with CXC chemokine family members GROa and IL-8. J Mol Biol 294(5):1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Raimondo D, Andreotti G, Saint N, Amodeo P, Renzone G, Sanseverino M, Socchi I, Molle G, Motta A, Scaloni A (2005) A folding-dependent mechanism of antimicrobial peptide resistance to degradation unveiled by solution structure of distinctin. Proc Natl Acad Sci USA 102(18):6309–6314. doi:10.1073/pnas.0409004102

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy A, Thennarasu S, Tan A, Gottipati K, Sreekumar S, Heyl DL, An FYP, Shelburne CE (2006) Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Biochemistry 45(20):6529–6540

    Article  PubMed  CAS  Google Scholar 

  • Resende JM, Mendonca MC, Munhoz VHO, Aisenbrey C, Verly RM, Bertani P, Cesar A, Pilo-Veloso D, Bechinger B (2009) Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy. Proc Natl Acad Sci USA 106(39):16639–16644. doi:10.1073/pnas.0905069106

    Article  PubMed  Google Scholar 

  • Rohrl J, Yang D, Oppenheim JJ, Hehlgans T (2010a) Human b-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol 184(12):6688–6694. doi:10.4049/jimmunol.0903984

    Article  PubMed  CAS  Google Scholar 

  • Rohrl J, Yang D, Oppenheim JJ, Hehlgans T (2010b) Specific binding and chemotactic activity of mBD4 and its functional orthologue hBD2 to CCR6-expressing cells. J Biol Chem 285(10):7028–7034. doi:10.1074/jbc.M109.091090

    Article  PubMed  CAS  Google Scholar 

  • Rojas-Ramos E, Avalos AF, Pérez-Fernandez L, Cuevas-Schacht F, Valencia-Maqueda E, Terán LM (2003) Role of the chemokines RANTES, monocyte chemotactic proteins-3 and −4, and eotaxins-1 and −2 in childhood asthma. Eur Respir J 22(2):310–316. doi:10.1183/09031936.03.00084802

    Article  PubMed  CAS  Google Scholar 

  • Roumestand C, Louis V, Aumelas A, Grassy G, Calas B, Chavanieu A (1998) Oligomerization of protegrin-1 in the presence of DPC micelles. A proton high-resolution NMR study. FEBS Lett 421(3):263–267

    Article  PubMed  CAS  Google Scholar 

  • Salanga CL, Handel TM (2011) Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp Cell Res 317(5):590–601. doi:10.1016/j.yexcr.2011.01.004

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Lenig D, Mackay CR, Lanzavecchia A (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187(6):875–883. doi:10.1084/jem.187.6.875

    Article  PubMed  CAS  Google Scholar 

  • Sauder DN, Mounessa NL, Katz SI, Dinarello CA, Gallin JI (1984) Chemotactic cytokines: the role of leukocytic pyrogen and epidermal cell thymocyte-activating factor in neutrophil chemotaxis. J Immunol 132(2):828–832

    PubMed  CAS  Google Scholar 

  • Sauty A, Dziejman M, Taha RA, Iarossi AS, Neote K, Garcia-Zepeda EA, Hamid Q, Luster AD (1999) The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. J Immunol 162(6):3549–3558

    PubMed  CAS  Google Scholar 

  • Schaffner A, King CC, Schaer D, Guiney DG (2004) Induction and antimicrobial activity of platelet basic protein derivatives in human monocytes. J Leukoc Biol 76(5):1010–1018. doi:10.1189/jlb.0404261

    Article  PubMed  CAS  Google Scholar 

  • Schibli DJ, Hunter HN, Aseyev V, Starner TD, Wiencek JM, McCray PB, Tack BF, Vogel HJ (2002) The solution structures of the human b-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem 277(10):8279–8289. doi:10.1074/jbc.M108830200

    Article  PubMed  CAS  Google Scholar 

  • Schmidtchen A, Frick IM, Andersson E, Tapper H, Björck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46(1):157–168

    Article  PubMed  CAS  Google Scholar 

  • Schroder JM, Mrowietz U, Morita E, Christophers E (1987) Purification and partial biochemical characterization of a human monocyte-derived, neutrophil-activating peptide that lacks interleukin 1 activity. J Immunol 139(10):3474–3483

    PubMed  CAS  Google Scholar 

  • Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human [beta]-defensin 1. Nature 469(7330):419–423. doi:10.1038/nature09674

    Article  PubMed  CAS  Google Scholar 

  • Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14(5):409–426

    Article  PubMed  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by [alpha]-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462(1–2):55–70

    PubMed  CAS  Google Scholar 

  • Shirane J, Nakayama T, Nagakubo D, Izawa D, Hieshima K, Shimomura Y, Yoshie O (2004) Corneal epithelial cells and stromal keratocytes efficiently produce CC chemokine-ligand 20 (CCL20) and attract cells expressing its receptor CCR6 in mouse herpetic stromal keratitis. Curr Eye Res 28(5):297–306. doi:10.1076/ceyr.28.5.297.28682

    Article  PubMed  CAS  Google Scholar 

  • Slungaard A (2005) Platelet factor 4: a chemokine enigma. Int J Biochem Cell Biol 37(6):1162–1167

    Article  PubMed  CAS  Google Scholar 

  • Smith DF, Galkina E, Ley K, Huo Y (2005) GRO family chemokines are specialized for monocyte arrest from flow. Am J Physiol Heart Circ Physiol 289(5):H1976–H1984. doi:10.1152/ajpheart.00153.2005

    Article  PubMed  CAS  Google Scholar 

  • Starner TD, Barker CK, Jia HP, Kang Y, McCray PB Jr (2003) CCL20 is an inducible product of human airway epithelia with innate immune properties. Am J Respir Cell Mol Biol 29(5):627–633. doi:10.1165/rcmb.2002-0272OC

    Article  PubMed  CAS  Google Scholar 

  • Steinberg DA, Lehrer RI (1997) Designer assays for antimicrobial peptides: disputing the “one-size-fits-all”. In: Shafer WM (ed) Antibacterial peptide protocols. Methods in molecular biology, vol 78. Humana Press, Totowa, NJ pp 169–186

    Google Scholar 

  • Sumby P, Zhang S, Whitney AR, Falugi F, Grandi G, Graviss EA, DeLeo FR, Musser JM (2008) A chemokine-degrading extracellular protease made by group A Streptococcus alters pathogenesis by enhancing evasion of the innate immune response. Infect Immun 76(3):978–985. doi:10.1128/iai.01354-07

    Article  PubMed  CAS  Google Scholar 

  • Suresh A, Verma C (2006) Modelling study of dimerization in mammalian defensins. BMC Bioinformatics 7(Suppl 5):S17

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan GJ, Holloway DE, Colvin RA, Campanella GK, Papageorgiou AC, Luster AD, Acharya KR (2003) Crystal structures of oligomeric forms of the IP-10/CXCL10 chemokine. Structure 11(5):521–532

    Article  PubMed  CAS  Google Scholar 

  • Tang Y-Q, Yeaman MR, Selsted ME (2002) Antimicrobial peptides from human platelets. Infect Immun 70(12):6524–6533. doi:10.1128/iai.70.12.6524-6533.2002

    Article  PubMed  CAS  Google Scholar 

  • Taylor K, Barran PE, Dorin JR (2008) Structure–activity relationships in β-defensin peptides. Pept Sci 90(1):1–7

    Article  CAS  Google Scholar 

  • Tencza SB, Creighton DJ, Yuan T, Vogel HJ, Montelaro RC, Mietzner TA (1999) Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization. J Antimicrob Chemother 44(1):33–41. doi:10.1093/jac/44.1.33

    Article  PubMed  CAS  Google Scholar 

  • Tohyama M, Sayama K, Komatsuzawa H, Hanakawa Y, Shirakata Y, Dai X, Yang L, Tokumaru S, Nagai H, Hirakawa S, Sugai M, Hashimoto K (2007) CXCL16 is a novel mediator of the innate immunity of epidermal keratinocytes. Int Immunol 19(9):1095–1102. doi:10.1093/intimm/dxm083

    Article  PubMed  CAS  Google Scholar 

  • Uguccioni M, Loetscher P, Forssmann U, Dewald B, Li H, Lima SH, Li Y, Kreider B, Garotta G, Thelen M, Baggiolini M (1996) Monocyte chemotactic protein 4 (MCP-4), a novel structural and functional analogue of MCP-3 and eotaxin. J Exp Med 183(5):2379–2384. doi:10.1084/jem.183.5.2379

    Article  PubMed  CAS  Google Scholar 

  • Van Damme J, Wuyts A, Froyen G, Van Coillie E, Struyf S, Billiau A, Proost P, Wang JM, Opdenakker G (1997) Granulocyte chemotactic protein-2 and related CXC chemokines: from gene regulation to receptor usage. J Leukoc Biol 62(5):563–569

    PubMed  Google Scholar 

  • Viola A, Luster AD (2008) Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 48(1):171–197. doi:10.1146/annurev.pharmtox.48.121806.154841

    Article  PubMed  CAS  Google Scholar 

  • Vivcharuk V, Kaznessis Y (2010a) Free energy profile of the interaction between a monomer or a dimer of protegrin-1 in a specific binding orientation and a model lipid bilayer. J Phys Chem B 114(8):2790–2797

    Article  PubMed  CAS  Google Scholar 

  • Vivcharuk V, Kaznessis YN (2010b) Dimerization of protegrin-1 in different environments. Int J Mol Sci 11(9):3177–3194

    Article  PubMed  CAS  Google Scholar 

  • von Hundelshausen P, Koenen RR, Sack M, Mause SF, Adriaens W, Proudfoot AEI, Hackeng TM, Weber C (2005) Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105(3):924–930. doi:10.1182/blood-2004-06-2475

    Article  CAS  Google Scholar 

  • Walz A, Baggiolini M (1990) Generation of the neutrophil-activating peptide NAP-2 from platelet basic protein or connective tissue-activating peptide III through monocyte proteases. J Exp Med 171(2):449–454. doi:10.1084/jem.171.2.449

    Article  PubMed  CAS  Google Scholar 

  • Walz A, Dewald B, von Tscharner V, Baggiolini M (1989) Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils. J Exp Med 170(5):1745–1750. doi:10.1084/jem.170.5.1745

    Article  PubMed  CAS  Google Scholar 

  • Walz A, Peveri P, Aschauer H, Baggiolini M (1987) Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun 149(2):755–761

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D, Jenkins N, Copeland NG, Gilbert DJ, Nguyen N, Abrams J, Kershenovich D, Smith K, McClanahan T, Vicari AP, Zlotnik A (2000) Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem 275(29):22313–22323. doi:10.1074/jbc.M001461200

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Watson C, Sharp JS, Handel TM, Prestegard JH (2011) Oligomeric structure of the chemokine CCL5/RANTES from NMR, MS and SAXS data. Structure 19(8):1138–1148. doi:10.1016/j.str.2011.06.001

    Article  PubMed  CAS  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. doi:10.1038/nprot.2007.521

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Albrecht S, Märki C (2008) Proteolytic processing of chemokines: implications in physiological and pathological conditions. Int J Biochem Cell Biol 40(6–7):1185–1198

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Belen Delgado M, Jones SA, Dewald B, Clark-Lewis I, Baggiolini M (1998) Granulocyte chemotactic protein 2 acts via both IL- 8 receptors, CXCR1 and CXCR2. Eur J Immunol 28(1):164–170

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Ruffing N, Shi X, Newman W, Soler D, Mackay CR, Qin S (1996) Discrete steps in binding and signaling of interleukin-8 with its receptor. J Biol Chem 271(49):31202–31209. doi:10.1074/jbc.271.49.31202

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Hoover DM, Yang D, Boulegue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human b-defensin 3. Proc Natl Acad Sci USA 100(15):8880–8885. doi:10.1073/pnas.1533186100

    Article  PubMed  CAS  Google Scholar 

  • Wuyts A, Proost P, Lenaerts J-P, Ben-Baruch A, Van Damme J, Wang JM (1998) Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. Eur J Biochem 255(1):67–73

    Article  PubMed  CAS  Google Scholar 

  • Wuyts A, Struyf S, Gijsbers K, Schutyser E, Put W, Conings R, Lenaerts JP, Geboes K, Opdenakker G, Menten P, Proost P, Van Damme J (2003) The CXC chemokine GCP-2/CXCL6 is predominantly induced in mesenchymal cells by interleukin-1beta and is down-regulated by interferon-gamma: comparison with interleukin-8/CXCL8. Lab Invest 83(1):23–34

    PubMed  CAS  Google Scholar 

  • Wuyts A, Van Osselaer N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A, Oppenheim JJ, Proost P, Van Damme J (1997) Characterization of synthetic human granulocyte chemotactic protein 2: usage of chemokine receptors CXCR1 and CXCR2 and in vivo inflammatory properties. Biochemistry 36(9):2716–2723

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y-Q, Bayer Arnold S, Yeaman Michael R (2002) Inhibition of intracellular macromolecular synthesis in Staphylococcus aureus by thrombin-induced platelet microbicidal proteins. J Infect Dis 185(3):348–356. doi:10.1086/338514

    Article  PubMed  CAS  Google Scholar 

  • Xiong YQ, Bayer AS, Elazegui L, Yeaman MR (2006) A synthetic congener modeled on a microbicidal domain of thrombin- induced platelet microbicidal protein 1 recapitulates staphylocidal mechanisms of the native molecule. Antimicrob Agents Chemother 50(11):3786–3792. doi:10.1128/aac.00038-06

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22(1):181–215

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3a display antimicrobial activity. J Leukoc Biol 74(3):448–455. doi:10.1189/jlb.0103024

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OMZ, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286(5439):525–528. doi:10.1126/science.286.5439.525

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Mayo KH, Daly TJ, Barry JK, La Rosa GJ (1994) Subunit association and structural analysis of platelet basic protein and related proteins investigated by 1 H NMR spectroscopy and circular dichroism. J Biol Chem 269(31):20110–20118

    PubMed  CAS  Google Scholar 

  • Yeaman MR, Gank KD, Bayer AS, Brass EP (2002) Synthetic peptides that exert antimicrobial activities in whole blood and blood-derived matrices. Antimicrob Agents Chemother 46(12):3883–3891. doi:10.1128/aac.46.12.3883-3891.2002

    Article  PubMed  CAS  Google Scholar 

  • Yeaman MR, Tang YQ, Shen AJ, Bayer AS, Selsted ME (1997) Purification and in vitro activities of rabbit platelet microbicidal proteins. Infect Immun 65(3):1023–1031

    PubMed  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2007) Unifying themes in host defence effector polypeptides. Nat Rev Microbiol 5(9):727–740

    Article  PubMed  CAS  Google Scholar 

  • Yeaman MR, Yount NY, Waring AJ, Gank KD, Kupferwasser D, Wiese R, Bayer AS, Welch WH (2007) Modular determinants of antimicrobial activity in platelet factor-4 family kinocidins. Biochim Biophys Acta 1768(3):609–619

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T, Matsushima K, Oppenheim JJ, Leonard EJ (1987a) Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)- stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J Immunol 139(3):788–793

    PubMed  CAS  Google Scholar 

  • Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, Leonard EJ (1987b) Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci USA 84(24):9233–9237

    Article  PubMed  CAS  Google Scholar 

  • Young H, Roongta V, Daly TJ, Mayo KH (1999) NMR structure and dynamics of monomeric neutrophil-activating peptide 2. Biochem J 338(3):591–598

    Article  PubMed  CAS  Google Scholar 

  • Yount NY, Gank KD, Xiong YQ, Bayer AS, Pender T, Welch WH, Yeaman MR (2004) Platelet microbicidal protein 1: structural themes of a multifunctional antimicrobial peptide. Antimicrob Agents Chemother 48(11):4395–4404. doi:10.1128/aac.48.11.4395-4404.2004

    Article  PubMed  CAS  Google Scholar 

  • Yount NY, Waring AJ, Gank KD, Welch WH, Kupferwasser D, Yeaman MR (2007) Structural correlates of antimicrobial efficacy in IL-8 and related human kinocidins. Biochim Biophys Acta 1768(3):598–608

    Article  PubMed  CAS  Google Scholar 

  • Yount NY, Yeaman MR (2004) Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci USA 101(19):7363–7368. doi:10.1073/pnas.0401567101

    Article  PubMed  CAS  Google Scholar 

  • Yung SC, Parenti D, Murphy PM (2011) Host chemokines bind to Staphylococcus aureus and stimulate protein A release. J Biol Chem 286(7):5069–5077. doi:10.1074/jbc.M110.195180

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75(1):39–48. doi:10.1189/jlb.0403147

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Chen L, Bancroft DP, Lai CK, Maione TE (1994) Crystal structure of recombinant human platelet factor 4. Biochemistry 33(27):8361–8366

    Article  PubMed  CAS  Google Scholar 

  • Zingaretti C, Falugi F, Nardi-Dei V, Pietrocola G, Mariani M, Liberatori S, Gallotta M, Tontini M, Tani C, Speziale P, Grandi G, Margarit I (2010) Streptococcus pyogenes SpyCEP: a chemokine-inactivating protease with unique structural and biochemical features. FASEB J 24(8):2839–2848. doi:10.1096/fj.09-145631

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel AS, Timmer AM, Pence MA, Locke JB, Buchanan JT, Turner CE, Mishalian I, Sriskandan S, Hanski E, Nizet V (2008) The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host Microbe 4(2):170–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Leo Nguyen and Dr. David Chan for providing the PDB files for full-length NAP-2 and TC-1 and to Dr. P.H.S. Kwakman and Dr. J. Krijgsveld for sharing unpublished results on thrombocidin-1.

  This work has been funded by an operating grant from the “Novel Alternatives to Antibiotics” program of the Canadian Institutes of Health Research to Dr. Hans J. Vogel. Mauricio Arias and Dr. Hans J. Vogel are the holders of a Studentship and a Scientist award, respectively, of the Alberta Heritage Foundation for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel AG

About this chapter

Cite this chapter

Arias, M., Zaat, S.A.J., Vogel, H.J. (2013). Structure–Function Relationships of Antimicrobial Chemokines. In: Hiemstra, P., Zaat, S. (eds) Antimicrobial Peptides and Innate Immunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0541-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0541-4_8

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0540-7

  • Online ISBN: 978-3-0348-0541-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics