Skip to main content

Helping the Host: Induction of Antimicrobial Peptides as a Novel Therapeutic Strategy Against Infections

  • Chapter
  • First Online:
Antimicrobial Peptides and Innate Immunity

Abstract

Endogenous antimicrobial peptides (AMPs) are gene encoded and can be considered as our own antibiotics. These peptides represent an ancient system since they are widespread in nature and have been identified in invertebrates, vertebrates, mammals and also in plants. Defensins and cathelicidins are the main families of AMPs in mammals including humans. From an evolutionary point of view, AMPs have coevolved with microbes in specific niches and constitute an important parameter in host–microbe interactions. The development of bacterial resistance against classical antibiotics is a growing problem, and novel antimicrobial strategies are urgently needed. Here, we present a concept based on the idea of inducing endogenous AMP expression by small compounds, such as vitamin D and butyrate. The induction of multiple AMPs with different mechanisms of action would minimize the risk of bacterial resistance. Thus, such inducing compounds may open new avenues for pharmaceutical intervention in the treatment or prevention of infections. Additional novel targets for medical treatment may be identified by dissecting signaling pathways and regulatory circuits for induced expression of AMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi R, Honma Y et al (2005) Selective activation of vitamin D receptor by lithocholic acid acetate, a bile acid derivative. J Lipid Res 46(1):46–57

    Article  PubMed  CAS  Google Scholar 

  • Bergman P, Johansson L et al (2006) Induction of the antimicrobial peptide CRAMP in the blood–brain barrier and meninges after meningococcal infection. Infect Immun 74(12):6982–6991

    Article  PubMed  CAS  Google Scholar 

  • Borregaard N (2010) Neutrophils, from marrow to microbes. Immunity 33(5):657–670

    Article  PubMed  CAS  Google Scholar 

  • Bosch TC, Augustin R et al (2009) Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Dev Comp Immunol 33(4):559–569

    Article  PubMed  CAS  Google Scholar 

  • Brown AJ, Goldsworthy SM et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319

    Article  PubMed  CAS  Google Scholar 

  • Brusilow SW (1991) Phenylacetylglutamine may replace urea as a vehicle for waste nitrogen excretion. Pediatr Res 29(2):147–150

    Article  PubMed  CAS  Google Scholar 

  • Burlina AB, Ogier H et al (2001) Long-term treatment with sodium phenylbutyrate in ornithine transcarbamylase-deficient patients. Mol Genet Metab 72(4):351–355

    Article  PubMed  CAS  Google Scholar 

  • Cadwell K, Liu JY et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263

    Article  PubMed  Google Scholar 

  • Cederlund A, Agerberth B et al (2010) Specificity in killing pathogens is mediated by distinct repertoires of human neutrophil peptides. J Innate Immun 2(6):508–521

    Article  PubMed  CAS  Google Scholar 

  • Cooney R, Baker J et al (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16(1):90–97

    Article  PubMed  CAS  Google Scholar 

  • D’Aldebert E, Biyeyeme Bi Mve MJ et al (2009) Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology 136(4):1435–1443

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Sayama K et al (2010) PPARgamma mediates innate immunity by regulating the 1alpha,25-dihydroxyvitamin D3 induced hBD-3 and cathelicidin in human keratinocytes. J Dermatol Sci 60(3):179–186

    Article  PubMed  CAS  Google Scholar 

  • Duits LA, Ravensbergen B et al (2002) Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106(4):517–525

    Article  PubMed  CAS  Google Scholar 

  • Edfeldt K, Agerberth B et al (2006) Involvement of the antimicrobial peptide LL-37 in human atherosclerosis. Arterioscler Thromb Vasc Biol 26(7):1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Foster SL, Hargreaves DC et al (2007) Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447(7147):972–978

    PubMed  CAS  Google Scholar 

  • Foster SL, Medzhitov R (2009) Gene-specific control of the TLR-induced inflammatory response. Clin Immunol 130(1):7–15

    Article  PubMed  CAS  Google Scholar 

  • Frick IM, Akesson P et al (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278(19):16561–16566

    Article  PubMed  CAS  Google Scholar 

  • Frohm M, Agerberth B et al (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272(24):15258–15263

    Article  PubMed  CAS  Google Scholar 

  • Funk CD (2005) Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov 4(8):664–672

    Article  PubMed  CAS  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720

    Article  PubMed  CAS  Google Scholar 

  • Gao N, Kumar A et al (2010) Flagellin-induced corneal antimicrobial peptide production and wound repair involve a novel NF-kappaB-independent and EGFR-dependent pathway. PLoS One 5(2):e9351

    Article  PubMed  CAS  Google Scholar 

  • Gillies PS, Dunn CJ (2000) Pioglitazone. Drugs 60(2):333–43, discussion 344–345

    Article  PubMed  CAS  Google Scholar 

  • Gombart AF, Borregaard N et al (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19(9):1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson GH, Agerberth B et al (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238(2):325–332

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson GH, Bergman P et al (2010) Battle and balance at mucosal surfaces–the story of Shigella and antimicrobial peptides. Biochem Biophys Res Commun 396(1):116–119

    Article  PubMed  CAS  Google Scholar 

  • Hampe J, Franke A et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211

    Article  PubMed  CAS  Google Scholar 

  • Hao HN, Zhao J et al (2001) Induction of human beta-defensin-2 expression in human astrocytes by lipopolysaccharide and cytokines. J Neurochem 77(4):1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Hase K, Eckmann L et al (2002) Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 70(2):953–963

    Article  PubMed  CAS  Google Scholar 

  • Hase K, Murakami M et al (2003) Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology 125(6):1613–1625

    Article  PubMed  CAS  Google Scholar 

  • Haussler MR, Haussler CA et al (2008) Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention. Nutr Rev 66(10 Suppl 2):S98–S112

    Article  PubMed  Google Scholar 

  • Hertz CJ, Wu Q et al (2003) Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J Immunol 171(12):6820–6826

    PubMed  CAS  Google Scholar 

  • Hoffmann JA, Reichhart JM (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3(2):121–126

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV (2009) Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol 7(5):367–374

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10(3):159–169

    Article  PubMed  CAS  Google Scholar 

  • Hugot JP (2006) CARD15/NOD2 mutations in Crohn’s disease. Ann N Y Acad Sci 1072:9–18

    Article  PubMed  CAS  Google Scholar 

  • Hugot JP, Chamaillard M et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603

    Article  PubMed  CAS  Google Scholar 

  • Islam D, Bandholtz L et al (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7(2):180–185

    Article  PubMed  CAS  Google Scholar 

  • Kida Y, Shimizu T et al (2006) Sodium butyrate up-regulates cathelicidin gene expression via activator protein-1 and histone acetylation at the promoter region in a human lung epithelial cell line, EBC-1. Mol Immunol 43(12):1972–1981

    Article  PubMed  CAS  Google Scholar 

  • Lande R, Gregorio J et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569

    Article  PubMed  CAS  Google Scholar 

  • Liu PT, Stenger S et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311(5768):1770–1773

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Su Q et al (1998) Differentiation-stimulated activity binds an ETS-like, essential regulatory element in the human promyelocytic defensin-1 promoter. J Biol Chem 273(15):8727–8740

    Article  PubMed  CAS  Google Scholar 

  • Martineau AR, Timms PM et al (2011) High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 377(9761):242–250

    Article  PubMed  CAS  Google Scholar 

  • Maslowski KM, Vieira AT et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286

    Article  PubMed  CAS  Google Scholar 

  • Mygind PH, Fischer RL et al (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437(7061):975–980

    Article  PubMed  CAS  Google Scholar 

  • Nell MJ, Tjabringa GS et al (2004) Bacterial products increase expression of the human cathelicidin hCAP-18/LL-37 in cultured human sinus epithelial cells. FEMS Immunol Med Microbiol 42(2):225–231

    Article  PubMed  CAS  Google Scholar 

  • Nizet V, Ohtake T et al (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414(6862):454–457

    Article  PubMed  CAS  Google Scholar 

  • O’Neil DA, Cole SP et al (2000) Regulation of human beta-defensins by gastric epithelial cells in response to infection with Helicobacter pylori or stimulation with interleukin-1. Infect Immun 68(9):5412–5415

    Article  PubMed  Google Scholar 

  • O’Neil DA, Porter EM et al (1999) Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 163(12):6718–6724

    PubMed  Google Scholar 

  • Ogura Y, Bonen DK et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606

    Article  PubMed  CAS  Google Scholar 

  • Ong PY, Ohtake T et al (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Ouellette AJ (2010) Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol 26(6):547–553

    Article  PubMed  Google Scholar 

  • Prost LR, Sanowar S et al (2007) Salmonella sensing of anti-microbial mechanisms to promote survival within macrophages. Immunol Rev 219:55–65

    Article  PubMed  CAS  Google Scholar 

  • Rabbani GH, Albert MJ et al (1999) Short-chain fatty acids improve clinical, pathologic, and microbiologic features of experimental shigellosis. J Infect Dis 179(2):390–397

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan B, Minton JE et al (2005) PU.1-mediated transcriptional regulation of prophenin-2 in primary bone marrow cells. Gene 352:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ramos HC, Rumbo M et al (2004) Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12(11):509–517

    Article  PubMed  CAS  Google Scholar 

  • Raqib R, Sarker P et al (2006) Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc Natl Acad Sci USA 103(24):9178–9183

    Article  PubMed  CAS  Google Scholar 

  • Salzman NH, Ghosh D et al (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422(6931):522–526

    Article  PubMed  CAS  Google Scholar 

  • Salzman NH, Hung K et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83

    Article  PubMed  CAS  Google Scholar 

  • Sarker P, Ahmed S et al (2011) Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: A potential therapeutic strategy. PLoS One 3(6):e20637

    Google Scholar 

  • Sartor RB (2001) Induction of mucosal immune responses by bacteria and bacterial components. Curr Opin Gastroenterol 17(6):555–561

    Article  PubMed  CAS  Google Scholar 

  • Schauber J, Svanholm C et al (2003) Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut 52(5):735–741

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Kruse T et al (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328(5982):1168–1172

    Article  PubMed  CAS  Google Scholar 

  • Sels J, Mathys J et al (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46(11):941–950

    Article  PubMed  CAS  Google Scholar 

  • Shafer WM, Qu X et al (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci USA 95(4):1829–1833

    Article  PubMed  CAS  Google Scholar 

  • Sherman H, Froy O (2008) Expression of human beta-defensin 1 is regulated via c-Myc and the biological clock. Mol Immunol 45(11):3163–3167

    Article  PubMed  CAS  Google Scholar 

  • Sperandio B, Regnault B et al (2008) Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J Exp Med 205(5):1121–1132

    Article  PubMed  CAS  Google Scholar 

  • Steinmann J, Halldorsson S et al (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53(12):5127–5133

    Article  PubMed  CAS  Google Scholar 

  • Talukder P, Satho T et al (2011) Trace metal zinc stimulates secretion of antimicrobial peptide LL-37 from Caco-2 cells through ERK and p38 MAP kinase. Int Immunopharmacol 11(1):141–144

    Article  PubMed  CAS  Google Scholar 

  • Termen S, Tollin M et al (2008) PU.1 and bacterial metabolites regulate the human gene CAMP encoding antimicrobial peptide LL-37 in colon epithelial cells. Mol Immunol 45(15):3947–3955

    Article  PubMed  CAS  Google Scholar 

  • Tjabringa GS, Aarbiou J et al (2003) The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 171(12):6690–6696

    PubMed  CAS  Google Scholar 

  • Travassos LH, Carneiro LA et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1):55–62

    Article  PubMed  CAS  Google Scholar 

  • Wan M, Sabirsh A et al (2007) Leukotriene B4 triggers release of the cathelicidin LL-37 from human neutrophils: novel lipid-peptide interactions in innate immune responses. FASEB J 21(11):2897–2905

    Article  PubMed  CAS  Google Scholar 

  • Wang TT, Dabbas B et al (2010) Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem 285(4):2227–2231

    Article  PubMed  CAS  Google Scholar 

  • Wang TT, Nestel FP et al (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912

    PubMed  CAS  Google Scholar 

  • Wehkamp J, Harder J et al (2004) NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 53(11):1658–1664

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Salzman NH et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 102(50):18129–18134

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Wang G et al (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179(5):3109–3118

    PubMed  CAS  Google Scholar 

  • Verbeek W, Lekstrom-Himes J et al (1999) Myeloid transcription factor C/EBPepsilon is involved in the positive regulation of lactoferrin gene expression in neutrophils. Blood 94(9):3141–3150

    PubMed  CAS  Google Scholar 

  • Verway M, Behr MA et al (2010) Vitamin D, NOD2, autophagy and Crohn’s disease. Expert Rev Clin Immunol 6(4):505–508

    Article  PubMed  Google Scholar 

  • Yu FS, Cornicelli MD et al (2010) Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide. J Immunol 185(2):1142–1149

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75(1):39–48

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhu S (2008a) Did cathelicidins, a family of multifunctional host-defense peptides, arise from a cysteine protease inhibitor? Trends Microbiol 16(8):353–360

    Article  PubMed  CAS  Google Scholar 

  • Zhu S (2008b) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol Immunol 45(3):828–838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ research is supported by the Swedish Foundation for Strategic Research, the Torsten and Ragnar Söderbergs Foundation, the Swedish Research Council, the Swedish International Development Cooperation Agency (SIDA), the Swedish Cancer Society and Karolinska Institutet, the Icelandic Centre for Research (RANNIS) and University of Iceland, and the Foundations of Magnus Bergwall, Åke Wiberg, and DA Hagelén.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitta Agerberth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel AG

About this chapter

Cite this chapter

Agerberth, B., Bergman, P., Gudmundsson, G.H. (2013). Helping the Host: Induction of Antimicrobial Peptides as a Novel Therapeutic Strategy Against Infections. In: Hiemstra, P., Zaat, S. (eds) Antimicrobial Peptides and Innate Immunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0541-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0541-4_14

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0540-7

  • Online ISBN: 978-3-0348-0541-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics