Skip to main content

Antimicrobial Peptides and Inflammatory Bowel Disease

  • Chapter
  • First Online:
Antimicrobial Peptides and Innate Immunity

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The pathogenesis of inflammatory bowel disease (IBD) is a complex and multifactorial process. In the last decades, IBD was thought to originate from dysregulation of adaptive immunity networks and classified as autoimmune disorder. Recent years have witnessed a revision of this dogma, and spurred by the findings of genome-wide association studies, defects in the mucosal barrier are now regarded as central to IBD pathogenesis. The major components of the barrier are the epithelial cell lining, the mucus layer, commensal bacteria, and an arsenal of antimicrobial peptides (AMPs). The expression pattern of these antimicrobials (e.g., defensins or cathelicidin-LL-37) in the human intestine has been elucidated over the last years, and numerous alterations were detected in IBD, especially in Crohn’s disease of the ileum. The α-defensin HD-5 is secreted in large quantities by Paneth cells, which are small epithelial cells at the bases of intestinal crypts. Variations in genes which show the highest linkage to Crohn’s disease affect proteins involved in Paneth cell degranulation. In addition to an outline of the strong associations between defective AMP secretion and ileal Crohn’s disease, defensin expression and function in colonic Crohn’s disease and ulcerative colitis will be covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akin H, Tahan G, Ture F et al (2011) Association between bactericidal/permeability increasing protein (BPI) gene polymorphism (Lys216Glu) and inflammatory bowel disease. J Crohns Colitis 5:14–18

    Article  PubMed  Google Scholar 

  • Aldhous MC, Noble CL, Satsangi J (2009) Dysregulation of human beta-defensin-2 protein in inflammatory bowel disease. PLoS One 4:e6285

    Article  PubMed  CAS  Google Scholar 

  • Anderson CA, Boucher G, Lees CW et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43:246–252

    Article  PubMed  CAS  Google Scholar 

  • Ayabe T, Wulff H, Darmoul D et al (2002) Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+−activated, intermediate conductance potassium channel. J Biol Chem 277:3793–3800

    Article  PubMed  CAS  Google Scholar 

  • Bager P, Arnved J, Ronborg S et al (2010) Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol 125:123–130

    Article  PubMed  Google Scholar 

  • Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962

    Article  PubMed  CAS  Google Scholar 

  • Bentley RW, Pearson J, Gearry RB et al (2010) Association of higher DEFB4 genomic copy number with Crohn’s disease. Am J Gastroenterol 105(2):354–359

    Article  PubMed  CAS  Google Scholar 

  • Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263

    Article  PubMed  Google Scholar 

  • Canny G, Levy O, Furuta GT et al (2002) Lipid mediator-induced expression of bactericidal/ permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci USA 99:3902–3907

    Article  PubMed  CAS  Google Scholar 

  • Canny G, Cario E, Lennartsson A et al (2006) Functional and biochemical characterization of epithelial bactericidal/permeability-increasing protein. Am J Physiol Gastrointest Liver Physiol 290:G557–G567

    Article  PubMed  CAS  Google Scholar 

  • Cash HL, Whitham CV, Behrendt CL et al (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126–1130

    Article  PubMed  CAS  Google Scholar 

  • Cunliffe RN, Rose FRAJ, Keyte J et al (2001) Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some viloous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48:176–185

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert AP, Fisher SA, Mirza MM et al (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122:867–874

    Article  PubMed  CAS  Google Scholar 

  • Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61(6):918–32

    Article  PubMed  CAS  Google Scholar 

  • de LE, Rajabi M, Zou G et al (2009) Selective arginines are important for the antibacterial activity and host cell interaction of human alpha-defensin 5. FEBS Lett 583:2507–2512

    Article  CAS  Google Scholar 

  • Dignass A, Preiss JC, Aust DE et al (2011) [Updated German guideline on diagnosis and treatment of ulcerative colitis, 2011]. Z Gastroenterol 49:1276–1341

    Article  PubMed  CAS  Google Scholar 

  • Doetze A, Satoguina J, Burchard G et al (2000) Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 12:623–630

    Article  PubMed  CAS  Google Scholar 

  • Elphick D, Liddell S, Mahida YR (2008) Impaired luminal processing of human defensin-5 in Crohn’s disease: persistence in a complex with chymotrypsinogen and trypsin. Am J Pathol 172:702–713

    Article  PubMed  CAS  Google Scholar 

  • Fellermann K, Stange DE, Schaeffeler E et al (2006) A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 79:439–448

    Article  PubMed  CAS  Google Scholar 

  • Franke A, McGovern DP, Barrett JC et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125

    Article  PubMed  CAS  Google Scholar 

  • Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9:556–567

    Article  PubMed  CAS  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  PubMed  CAS  Google Scholar 

  • Ghosh D, Porter EM, Wilk DJ, Poles MA, Ganz T, Bevins CL (2000) Proteolytic cleavage of human intestinal defensin 5 (HD5) precursor by intestinal proteases. Gastroenterology 118(4):A839, Ref Type: Abstract

    Article  Google Scholar 

  • Ghosh D, Porter E, Shen B et al (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3:583–590

    Article  PubMed  CAS  Google Scholar 

  • Guindi M, Riddell RH (2004) Indeterminate colitis. J Clin Pathol 57:1233–1244

    Article  PubMed  CAS  Google Scholar 

  • Hampe J, Cuthbert A, Croucher PJ et al (2001) Association between insertion mutation in NOD2 gene and Crohn’s di German and British populations. Lancet 357(9272):1925–1928

    Article  PubMed  CAS  Google Scholar 

  • Hiemstra PS (2002) Novel roles of protease inhibitors in infection and inflammation. Biochem Soc Trans 30:116–120

    Article  PubMed  CAS  Google Scholar 

  • Hollox EJ, Armour JA, Barber JC (2003) Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 73:591–600

    Article  PubMed  CAS  Google Scholar 

  • Hollox EJ, Barber JC, Brookes AJ et al (2008) Defensins and the dynamic genome: what we can learn from structural variation at human chromosome band 8p23.1. Genome Res 18:1686–1697

    Article  PubMed  CAS  Google Scholar 

  • Hunter MM, Wang A, McKay DM (2007) Helminth infection enhances disease in a murine TH2 model of colitis. Gastroenterology 132:1320–1330

    Article  PubMed  CAS  Google Scholar 

  • Iimura M, Gallo RL, Hase K et al (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174:4901–4907

    PubMed  CAS  Google Scholar 

  • Inoue N, Tamura K, Kinouchi Y et al (2002) Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology 123:86–91

    Article  PubMed  CAS  Google Scholar 

  • Islam D, Bandholtz L, Nilsson J et al (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7:180–185

    Article  PubMed  CAS  Google Scholar 

  • Jager S, Stange EF, Wehkamp J (2010) Antimicrobial peptides in gastrointestinal inflammation. Int J Inflam 2010:910283

    PubMed  Google Scholar 

  • Johansson ME, Ambort D, Pelaseyed T et al (2011a) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68:3635–3641

    Article  PubMed  CAS  Google Scholar 

  • Johansson ME, Larsson JM, Hansson GC (2011b) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108(Suppl 1):4659–4665

    Article  PubMed  Google Scholar 

  • Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756

    Article  PubMed  CAS  Google Scholar 

  • Khan KJ, Ullman TA, Ford AC et al (2011) Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol 106:661–673

    Article  PubMed  CAS  Google Scholar 

  • Kiehne K, Brunke G, Meyer D et al (2005) Oesophageal defensin expression during Candida infection and reflux disease. Scand J Gastroenterol 40:501–507

    Article  PubMed  CAS  Google Scholar 

  • Kocsis AK, Lakatos PL, Somogyvari F et al (2008) Association of beta-defensin 1 single nucleotide polymorphisms with Crohn’s disease. Scand J Gastroenterol 43:299–307

    Article  PubMed  CAS  Google Scholar 

  • Koslowski MJ, Kubler I, Chamaillard M et al (2009) Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PLoS One 4:e4496

    Article  PubMed  CAS  Google Scholar 

  • Koslowski MJ, Teltschik Z, Beisner J et al (2012) Association of a functional variant in the Wnt co-receptor LRP6 with early onset ileal Crohn’s disease. PLoS Genet 8:e1002523

    Article  PubMed  CAS  Google Scholar 

  • Kotarsky K, Sitnik KM, Stenstad H et al (2010) A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol 3:40–48

    Article  PubMed  CAS  Google Scholar 

  • Lala S, Ogura Y, Osborne C et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125:47–57

    Article  PubMed  CAS  Google Scholar 

  • Langhorst J, Junge A, Rueffer A et al (2009) Elevated human beta-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am J Gastroenterol 104:404–410

    Article  PubMed  CAS  Google Scholar 

  • Mastroianni JR, Ouellette AJ (2009) {alpha}-defensins in enteric innate immunity: functional paneth cell {alpha}-defensins in mouse colonic lumen. J Biol Chem 284(41):27848–56

    Article  PubMed  CAS  Google Scholar 

  • Maurice MM, Nakamura H, Gringhuis S et al (1999) Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 42:2430–2439

    Article  PubMed  CAS  Google Scholar 

  • Medveczky P, Szmola R, Sahin-Toth M (2009) Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochem J 420:335–343

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Hoffert U, Hornef MW, Henriques-Normark B et al (2008) Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57:764–771

    Article  PubMed  CAS  Google Scholar 

  • Mondel M, Schroeder BO, Zimmermann K et al (2008) Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans. Mucosal Immunol 2:166–172

    Article  PubMed  CAS  Google Scholar 

  • Nevalainen TJ, Graham GG, Scott KF (2008) Antibacterial actions of secreted phospholipases A2. Review. Biochim Biophys Acta 1781:1–9

    Article  PubMed  CAS  Google Scholar 

  • Niyonsaba F, Iwabuchi K, Matsuda H et al (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14:421–426

    Article  PubMed  CAS  Google Scholar 

  • Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111:273–281

    Article  PubMed  CAS  Google Scholar 

  • Nuding S, Fellermann K, Wehkamp J et al (2007) Reduced mucosal antimicrobial activity in Crohn’s disease of the colon. Gut 56:1240–1247

    Article  PubMed  Google Scholar 

  • Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24:1693–1703

    Article  PubMed  CAS  Google Scholar 

  • Pazgier M, Prahl A, Hoover DM et al (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282:1819–1829

    Article  PubMed  CAS  Google Scholar 

  • Petnicki-Ocwieja T, Hrncir T, Liu YJ et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA 106:15813–15818

    Article  PubMed  Google Scholar 

  • Peyrin-Biroulet L, Chamaillard M (2007) NOD2 and defensins: translating innate to adaptive immunity in Crohn’s disease. J Endotoxin Res 13:135–139

    Article  PubMed  CAS  Google Scholar 

  • Peyrin-Biroulet L, Beisner J, Wang G et al (2010) Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci USA 107:8772–8777

    Article  PubMed  Google Scholar 

  • Rohrl J, Yang D, Oppenheim JJ et al (2010) Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol 184:6688–6694

    Article  PubMed  CAS  Google Scholar 

  • Rumio C, Besusso D, Palazzo M et al (2004) Degranulation of paneth cells via toll-like receptor 9. Am J Pathol 165:373–381

    Article  PubMed  CAS  Google Scholar 

  • Sallenave JM (2002) Antimicrobial activity of antiproteinases. Biochem Soc Trans 30:111–115

    Article  PubMed  CAS  Google Scholar 

  • Salzman NH, Hung K, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11:76–83

    Article  PubMed  CAS  Google Scholar 

  • Sartor RB (2005) Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut 54:896–898

    Article  PubMed  Google Scholar 

  • Sass V, Schneider T, Wilmes M et al (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun 78:2793–2800

    Article  PubMed  CAS  Google Scholar 

  • Satsangi J, Silverberg MS, Vermeire S et al (2006) The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 55:749–753

    Article  PubMed  CAS  Google Scholar 

  • Scarpa M, Grillo A, Scarpa M et al (2012) Innate immune environment in ileal pouch mucosa: alpha5 defensin up-regulation as predictor of chronic/relapsing pouchitis. J Gastrointest Surg 16:188–201

    Article  PubMed  Google Scholar 

  • Schauber J, Rieger D, Weiler F et al (2006) Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur J Gastroenterol Hepatol 18:615–621

    Article  PubMed  CAS  Google Scholar 

  • Schlee M, Harder J, Koten B et al (2008) Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 151:528–535

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Fellermann K, Fritz P et al (2007) Attenuated induction of epithelial and leukocyte serine antiproteases elafin and secretory leukocyte protease inhibitor in Crohn's disease. J Leukoc Biol 81(4):907–15. doi:10.1189/jlb.0906581:

    Article  PubMed  CAS  Google Scholar 

  • Schroeder BO, Wu Z, Nuding S et al (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469:419–423

    Article  PubMed  CAS  Google Scholar 

  • Simms LA, Doecke JD, Walsh MD et al (2008) Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 57:903–910

    Article  PubMed  CAS  Google Scholar 

  • Simms LA, Doecke JD, Roberts RL et al (2010) KCNN4 gene variant is associated with ileal Crohn’s disease in the Australian and New Zealand population. Am J Gastroenterol 105(10):2209–17

    Article  PubMed  CAS  Google Scholar 

  • Stange EF (2009) For bugs in bile: the times they are a-changin’. Gastroenterology 136:1164–1167

    Article  PubMed  CAS  Google Scholar 

  • Steinmann J, Halldorsson S, Agerberth B et al (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53:5127–5133

    Article  PubMed  CAS  Google Scholar 

  • Subramani DB, Johansson ME, Dahlen G et al (2010) Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus. Benef Microbes 1:343–350

    Article  PubMed  CAS  Google Scholar 

  • Summers RW, Elliott DE, Urban JF Jr et al (2005a) Trichuris suis therapy in Crohn’s disease. Gut 54:87–90

    Article  PubMed  CAS  Google Scholar 

  • Summers RW, Elliott DE, Urban JF Jr et al (2005b) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128:825–832

    Article  PubMed  Google Scholar 

  • Thachil E, Hugot JP, Arbeille B et al (2012) Abnormal activation of autophagy-induced crinophagy in paneth cells from patients with Crohn’s disease. Gastroenterology 142:1097–1099

    Article  PubMed  Google Scholar 

  • Tollin M, Bergman P, Svenberg T et al (2003) Antimicrobial peptides in the first line defence of human colon mucosa. Peptides 24:523–530

    Article  PubMed  CAS  Google Scholar 

  • Vaishnava S, Behrendt CL, Ismail AS et al (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105:20858–20863

    Article  PubMed  Google Scholar 

  • Vaishnava S, Yamamoto M, Severson KM et al (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258

    Article  PubMed  CAS  Google Scholar 

  • van Es JH, Jay P, Gregorieff A et al (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7:381–386

    Article  PubMed  CAS  Google Scholar 

  • Voss E, Wehkamp J, Wehkamp K et al (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281:2005–2011

    Article  PubMed  CAS  Google Scholar 

  • Wang TT, Dabbas B, Laperriere D et al (2010) Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem 285:2227–2231

    Article  PubMed  CAS  Google Scholar 

  • Weber G, Heilborn JD, Chamorro Jimenez CI et al (2005) Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Invest Dermatol 124:1080–1082

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Stange EF (2010) Paneth’s disease. J Crohns Colitis 4:523–531

    Article  PubMed  Google Scholar 

  • Wehkamp J, Fellermann K, Herrlinger KR et al (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol 14:745–752

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Harder J, Weichenthal M et al (2003) Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 9:215–223

    Article  PubMed  Google Scholar 

  • Wehkamp J, Harder J, Wehkamp K et al (2004) NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72:5750–5758

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Salzman NH, Porter E et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 102:18129–18134

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Chu H, Shen B et al (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580:5344–5350

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Wang G, Kubler I et al (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179:3109–3118

    PubMed  CAS  Google Scholar 

  • Wilson CL, Ouellette AJ, Satchell DP et al (1999) Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN et al (1999) β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chen Q, Hoover DM et al (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74:448–455

    Article  PubMed  CAS  Google Scholar 

  • Yazdanbakhsh M, Kremsner PG, van RR (2002) Allergy, parasites, and the hygiene hypothesis. Science 296:490–494

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7:179–196

    PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Wang I, Lehrer RI (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396:319–322

    Article  PubMed  CAS  Google Scholar 

  • Zilbauer M, Dorrell N, Boughan PK et al (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73:7281–7289

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Wehkamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel AG

About this chapter

Cite this chapter

Jäger, S., Stange, E.F., Wehkamp, J. (2013). Antimicrobial Peptides and Inflammatory Bowel Disease. In: Hiemstra, P., Zaat, S. (eds) Antimicrobial Peptides and Innate Immunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0541-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0541-4_10

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0540-7

  • Online ISBN: 978-3-0348-0541-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics