Skip to main content

Evolution of Antimicrobial Peptides: A View from the Cystine Chapel

  • Chapter
  • First Online:

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

An animal’s environment contains smaller entities that may attack it and cause illness or death. The immune system evolved to protect against such threats. It has two branches, one innate and the other adaptive. The former relies on field-tested molecules that have been selected over eons. Since they are gene-encoded, these innate molecules are deployed with little or no delay. The adaptive immune system consists of molecular and cellular machinery that produces custom-tailored molecules. Its handiwork is relatively slow, and many clients in need of its products would be lost if their innate systems did not also exist. This chapter focuses on cysteine-containing antimicrobial peptides that contain one or more internal disulfide bonds. Special emphasis is placed on the evolution of two superfamilies of defensins: small, usually cationic and amphipathic host defense molecules with three or four intramolecular disulfide bonds. The ancient roots of both defensin groups predate the advent of adaptive immunity by hundreds of millions of years. One superfamily includes the α-, β-, γ-, and θ-defensins of vertebrates, and the “big defensins” found in cephalochordates, mollusks, and crustaceans. The other superfamily of defensins is expressed in arthropods, mollusks, and fungi and may have arisen much earlier. Like defensins, the evolution of other families of cysteine-containing AMPs can be traced to the predawn of vertebrate existence. Collectively and individually, antimicrobial peptides provide a broad range of protective effects. Yet, despite their essential contributions to animal existence, and perhaps because specificity ranks higher than efficacy in the view of most immunologists, AMPs have often been undervalued. Ironically, it is precisely because AMPs lack specificity that these broadly efficacious molecules have been conserved and refined for more than one billion years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMP(s):

Antimicrobial peptide(s)

References

  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 92:195–199

    Article  PubMed  CAS  Google Scholar 

  • Alibardi L, Celeghin A, Dalla VL (2012) Wounding in lizards results in the release of beta-defensins at the wound site and formation of an antimicrobial barrier. Dev Comp Immunol 36(3):557–565, PMID:22001772

    Article  PubMed  CAS  Google Scholar 

  • Amiche M, Galanth C (2011) Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Curr Pharm Biotechnol 12(1184):1193

    Google Scholar 

  • Amid C, Rehaume LM, Brown KL, Gilbert JG, Dougan G, Hancock RE et al (2009) Manual annotation and analysis of the defensin gene cluster in the C57BL/6 J mouse reference genome. BMC Genomics 10:606. doi:10.1186/1471-2164-10-606

    Article  PubMed  CAS  Google Scholar 

  • Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Sillard R et al (1995) NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J 14:1615–1625

    PubMed  CAS  Google Scholar 

  • Andersson M, Gunne H, Agerberth B, Boman A, Bergman T, Olsson B et al (1996) NK-lysin, structure and function of a novel effector molecule of porcine T and NK cells. Vet Immunol Immunopathol 54:123–126

    Article  PubMed  CAS  Google Scholar 

  • Andra J, Hammer MU, Grotzinger J, Jakovkin I, Lindner B, Vollmer E et al (2009) Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes. Biol Chem 390:337–349

    Article  PubMed  CAS  Google Scholar 

  • Andreu D, Carreno C, Linde C, Boman HG, Andersson M (1999) Identification of an anti-mycobacterial domain in NK-lysin and granulysin. Biochem J 344(Pt 3):845–849

    Article  PubMed  CAS  Google Scholar 

  • Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

    Article  PubMed  CAS  Google Scholar 

  • Aumelas A, Mangoni M, Roumestand C, Chiche L, Despaux E, Grassy G et al (1996) Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur J Biochem 237:575–583

    Article  PubMed  CAS  Google Scholar 

  • Ayala FJ, Rzhetsky A, Ayala FJ (1998) Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proc Natl Acad Sci USA 95:606–611

    Article  PubMed  CAS  Google Scholar 

  • Bagella L, Scocchi M, Zanetti M (1995) cDNA sequences of three sheep myeloid cathelicidins. FEBS Lett 376(2):25–228

    Google Scholar 

  • Bajoghli B, Guo P, Aghaallaei N, Hirano M, Strohmeier C, McCurley N et al (2011) A thymus candidate in lampreys. Nature 470:90–94

    Article  PubMed  CAS  Google Scholar 

  • Baker EN, Baker HM, Kidd RD (2002) Lactoferrin and transferrin: functional variations on a common structural framework. Biochem Cell Biol 80:27–34

    Article  PubMed  CAS  Google Scholar 

  • Basanez G, Shinnar AE, Zimmerberg J (2002) Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Lett 532:115–120

    Article  PubMed  CAS  Google Scholar 

  • Basir YJ, Conlon JM (2003) Peptidomic analysis of the skin secretions of the pickerel frog Rana palustris identifies six novel families of structurally-related peptides. Peptides 24:379–383

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Bennett HP (2009) The granulin gene family: from cancer to dementia. Bioessays 31:1245–1254

    Article  PubMed  CAS  Google Scholar 

  • Batista CV, Scaloni A, Rigden DJ, Silva LR, Rodrigues RA, Dukor R et al (2001) A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett 494:85–89

    Article  PubMed  CAS  Google Scholar 

  • Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73:472–479

    Article  PubMed  CAS  Google Scholar 

  • Bergquist DC, Williams FM, Fisher CR (2000) Longevity record for deep-sea invertebrate. Nature 403:499–500

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Terras FR, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Bruhn H (2005) A short guided tour through functional and structural features of saposin-like proteins. Biochem J 389:249–257

    Article  PubMed  CAS  Google Scholar 

  • Bruhn H, Riekens B, Berninghausen O, Leippe M (2003) Amoebapores and NK-lysin, members of a class of structurally distinct antimicrobial and cytolytic peptides from protozoa and mammals: a comparative functional analysis. Biochem J 375:737–744

    Article  PubMed  CAS  Google Scholar 

  • Bruhn O, Paul S, Tetens J, Thaller G (2009) The repertoire of equine intestinal alpha-defensins. BMC Genomics 10:631. doi:10.1186/1471-2164-10-631

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti S, Sen PC, Sinha NK (1988) Purification and characterization of a low molecular weight basic protein from marine turtle egg white. Arch Biochem Biophys 262:286–292

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Sinha NK, Banerjee S, Roy D, Chattopadhyay D, Roy S (2006) Small cationic protein from a marine turtle has beta-defensin-like fold and antibacterial and antiviral activity. Proteins 64:524–531

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Zhou M, Gagliardo R, Walker B, Shaw C (2006) Elements of the granular gland peptidome and transcriptome persist in air-dried skin of the South American orange-legged leaf frog, Phyllomedusa hypocondrialis. Peptides 27(21):29–2136

    Google Scholar 

  • Clark DP, Durell S, Maloy WL, Zasloff M (1994) Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J Biol Chem 269:10849–10855

    PubMed  CAS  Google Scholar 

  • Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G et al (2002) Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci USA 99:1813–1818

    Article  PubMed  CAS  Google Scholar 

  • Conlon JM (2011a) Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 68:2303–2315

    Article  PubMed  CAS  Google Scholar 

  • Conlon JM (2011b) The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res 343(201–21):2

    Google Scholar 

  • Conlon JM, Kolodziejek J, Nowotny N (2004) Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta 1696:1–14

    Article  PubMed  CAS  Google Scholar 

  • Couto MA, Harwig SS, Cullor JS, Hughes JP, Lehrer RI (1992a) Identification of eNAP-1, an antimicrobial peptide from equine neutrophils. Infect Immun 60:3065–3071

    PubMed  CAS  Google Scholar 

  • Couto MA, Harwig SS, Cullor JS, Hughes JP, Lehrer RI (1992b) eNAP- 2, a novel cysteine-rich bactericidal peptide from equine leukocytes. Infect Immun 60(504):2–5047

    Google Scholar 

  • Couto MA, Harwig SS, Lehrer RI (1993) Selective inhibition of microbial serine proteases by eNAP- 2, an antimicrobial peptide from equine neutrophils. Infect Immun 61:2991–2994

    PubMed  CAS  Google Scholar 

  • Cowland JB, Johnsen AH, Borregaard N (1995) hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 368:173–176

    Article  PubMed  CAS  Google Scholar 

  • Dandekar T, Leippe M (1997) Molecular modeling of amoebapore and NK-lysin: a four-alpha-helix bundle motif of cytolytic peptides from distantly related organisms. Fold Des 2(47):52

    Google Scholar 

  • Dassanayake RS, Silva Gunawardene YI, Tobe SS (2007) Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized alpha/beta motifs. Peptides 28:62–75

    Article  PubMed  CAS  Google Scholar 

  • Dubin G (2002) Extracellular proteases of Staphylococcus spp. Biol Chem 383:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Ebert TA (2008) Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus. Exp Gerontol 43:734–738

    Article  PubMed  Google Scholar 

  • Ehret-Sabatier L, Loew D, Goyffon M, Fehlbaum P, Hoffmann JA, van Dorsselaer A et al (1996) Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem 271:29537–29544

    Article  PubMed  CAS  Google Scholar 

  • Fazio MA, Oliveira VX Jr, Bulet P, Miranda MT, Daffre S, Miranda A (2006) Structure-activity relationship studies of gomesin: importance of the disulfide bridges for conformation, bioactivities, and serum stability. Biopolymers 84:205–218

    Article  PubMed  CAS  Google Scholar 

  • Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C et al (1994) Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 269:33159–33163

    PubMed  CAS  Google Scholar 

  • Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M, Merluzzi L et al (1997) Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 272:13088–13093

    Article  PubMed  CAS  Google Scholar 

  • Ganz T, Nemeth E (2011) Hepcidin and disorders of iron metabolism. Annu Rev Med 2:347–360

    Article  CAS  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF et al (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76(14):27–1435

    Google Scholar 

  • Garcia AE, Osapay G, Tran PA, Yuan J, Selsted ME (2008) Isolation, synthesis, and antimicrobial activities of naturally occurring theta-defensin isoforms from baboon leukocytes. Infect Immun 76:5883–5891

    Article  PubMed  CAS  Google Scholar 

  • Gennaro R, Dewald B, Horisberger U, Gubler HU, Baggiolini M (1983) A novel type of cytoplasmic granule in bovine neutrophils. J Cell Biol 96:1651–1661

    Article  PubMed  CAS  Google Scholar 

  • Gerdol M, DeMoro G, Manfrin C, Venier P, Pallavicini A (2011) Big defensins and mytimacins, new AMP families of the Mediterranean mussel Mytilus galloprovincialis. Dev Comp Immunol 36(2):390–399, PMID:21871485

    Article  PubMed  CAS  Google Scholar 

  • Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62:2588–2598

    Article  PubMed  CAS  Google Scholar 

  • Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1, 25-dihydroxyvitamin D3. FASEB J 19:1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Gombart AF, Saito T, Koeffler HP (2009) Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics 10:321

    Article  PubMed  CAS  Google Scholar 

  • Gong D, Wilson PW, Bain MM, McDade K, Kalina J, Herve-Grepinet V et al (2010) Gallin; an antimicrobial peptide member of a new avian defensin family, the ovodefensins, has been subject to recent gene duplication. BMC Immunol 11:12. doi:10.1186/1471-2172-11-12

    Article  PubMed  CAS  Google Scholar 

  • Hanzawa H, Shimada I, Kuzuhara T, Komano H, Kohda D, Inagaki F et al (1990) 1 H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Lett 269:413–420

    Article  PubMed  CAS  Google Scholar 

  • Harwig SS, Swiderek KM, Kokryakov VN, Tan L, Lee TD, Panyutich EA et al (1994) Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett 342:281–285

    Article  PubMed  CAS  Google Scholar 

  • Harwig SS, Waring A, Yang HJ, Cho Y, Tan L, Lehrer RI (1996) Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations. Eur J Biochem 240:352–357

    Article  PubMed  CAS  Google Scholar 

  • Henriques ST, Tan CC, Craik DJ, Clark RJ (2010) Structural and functional analysis of human liver-expressed antimicrobial peptide 2. Chembiochem 11:2148–2157

    Article  PubMed  CAS  Google Scholar 

  • Hiemstra PS, Maassen RJ, Stolk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH (1996) Antibacterial activity of antileukoprotease. Infect Immun 64:4520–4524

    PubMed  CAS  Google Scholar 

  • Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R (1997) Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother 41:54–59

    PubMed  CAS  Google Scholar 

  • Hou ZC, Romero R, Wildman DE (2009) Phylogeny of the Ferungulata (Mammalia: Laurasiatheria) as determined from phylogenomic data. Mol Phylogenet Evol 5(2):660–664

    Article  CAS  Google Scholar 

  • Hubert F, Noel T, Roch P (1996) A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis). Eur J Biochem 240(30):2–306

    Google Scholar 

  • Huttner KM, Lambeth MR, Burkin HR, Burkin DJ, Broad TE (1998) Localization and genomic organization of sheep antimicrobial peptide genes. Gene 206:85–91

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga S, Kawabata S, Muta T (1998) New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem 1(23):1–15

    Article  Google Scholar 

  • Jang WS, Kim KN, Lee YS, Nam MH, Lee IH (2002) Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett 521:81–86

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Dingley AJ, Augustin R, Anton-Erxleben F, Stanisak M, Gelhaus C et al (2009) Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan Hydra. J Biol Chem 284:1896–1905

    Article  PubMed  CAS  Google Scholar 

  • Koenig E, Bininda-Emonds OR (2011) Evidence for convergent evolution in the antimicrobial peptide system in anuran amphibians. Peptides 32:20–25

    Article  CAS  Google Scholar 

  • Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV et al (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327:231–236

    Article  PubMed  CAS  Google Scholar 

  • Krause A, Sillard R, Kleemeier B, Kluver E, Maronde E, Conejo-Garcia JR et al (2003) Isolation and biochemical characterization of LEAP- 2, a novel blood peptide expressed in the liver. Protein Sci 12:143–152

    Article  PubMed  CAS  Google Scholar 

  • Krensky AM (2000) Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells. Biochem Pharmacol 59:317–320

    Article  PubMed  CAS  Google Scholar 

  • Lambert J, Keppi E, Dimarcq JL, Wicker C, Reichhart JM, Dunbar B et al (1989) Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci USA 86:262–266

    Article  PubMed  CAS  Google Scholar 

  • Lee IH, Lee YS, Kim CH, Kim CR, Hong T, Menzel L et al (2001) Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. Biochim Biophys Acta 1527:141–148

    Article  PubMed  CAS  Google Scholar 

  • Leippe M, Herbst R (2004) Ancient weapons for attack and defense: the pore-forming polypeptides of pathogenic enteric and free-living amoeboid protozoa. J Eukaryot Microbiol 51:516–521

    Article  PubMed  CAS  Google Scholar 

  • Leonova L, Kokryakov VN, Aleshina G, Hong T, Nguyen T, Zhao C et al (2001) Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol 70:461–464

    PubMed  CAS  Google Scholar 

  • Li J, Zhang C, Xu X, Wang J, Yu H, Lai R et al (2007) Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J 21:2466–2473

    Article  PubMed  CAS  Google Scholar 

  • Linzmeier RM, Ganz T (2005) Human defensin gene copy number polymorphisms: comprehensive analysis of independent variation in alpha- and beta-defensin regions at 8p 2 2-p 23. Genomics 86:23–430

    Article  CAS  Google Scholar 

  • Linzmeier R, Ho CH, Hoang BV, Ganz T (1999) A 450-kb contig of defensin genes on human chromosome 8p 23. Gene 233:205–211

    Article  PubMed  CAS  Google Scholar 

  • Lynn DJ, Bradley DG (2007) Discovery of alpha-defensins in basal mammals. Dev Comp Immunol 31:963–967

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K, Nakayama M, Fukui M, Otaka A, Funakoshi S, Fujii N et al (1993) Role of disulfide linkages in tachyplesin-lipid interactions. Biochemistry 32:11704–11710

    Article  PubMed  CAS  Google Scholar 

  • Mitta G, Vandenbulcke F, Hubert F, Roch P (1999) Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. J Cell Sci 112:4233–4242

    PubMed  CAS  Google Scholar 

  • Miyakawa Y, Ratnakar P, Rao AG, Costello ML, Mathieu-Costello O, Lehrer RI et al (1996) In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. Infect Immun 64:926–932

    PubMed  CAS  Google Scholar 

  • Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M et al (1989) Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. J Biochem 106:663–668

    PubMed  CAS  Google Scholar 

  • Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S et al (1988) Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 263:16709–16713

    PubMed  CAS  Google Scholar 

  • Naknukool S, Hayakawa S, Sun Y, Ogawa M (2008) Structural and physicochemical characteristics of novel basic proteins isolated from duck egg white. Biosci Biotechnol Biochem 72:2082–2091

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TX, Cole AM, Lehrer RI (2003) Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 24:1647–1654

    Article  PubMed  CAS  Google Scholar 

  • Odani S, Koide T, Ono T, Takahashi Y, Suzuki J (1989) Covalent structure of a low-molecular-mass protein, meleagrin, present in a turkey (Meleagris gallopavo) ovomucoid preparation. J Biochem 105:660–663

    PubMed  CAS  Google Scholar 

  • Ogata K, Linzer BA, Zuberi RI, Ganz T, Lehrer RI, Catanzaro A (1992) Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium-Mycobacterium intracellulare. Infect Immun 60:4720–4725

    PubMed  CAS  Google Scholar 

  • Ohta M, Ito H, Masuda K, Tanaka S, Arakawa Y, Wacharotayankun R et al (1992) Mechanisms of antibacterial action of tachyplesins and polyphemusins, a group of antimicrobial peptides isolated from horseshoe crab hemocytes. Antimicrob Agents Chemother 36:1460–1465

    Article  PubMed  CAS  Google Scholar 

  • Orth D, Ehrlenbach S, Brockmeyer J, Khan AB, Huber G, Karch H et al (2010) EspP, a serine protease of enterohemorrhagic Escherichia coli, impairs complement activation by cleaving complement factors C3/C3b and C5. Infect Immun 78(4):294–4301

    Google Scholar 

  • Ovchinnikova TV, Aleshina GM, Balandin SV, Krasnosdembskaya AD, Markelov ML, Frolova EI et al (2004) Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett 577:209–214

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikova TV, Shenkarev ZO, Nadezhdin KD, Balandin SV, Zhmak MN, Kudelina IA et al (2007) Recombinant expression, synthesis, purification, and solution structure of arenicin. Biochem Biophys Res Commun 360:156–162

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini A, Hülsmeier AJ, Hunziker P, Thomas U (2004) Proteolytic fragments of ovalbumin display antimicrobial activity. Biochim Biophys Acta 1672:76–85

    Article  PubMed  CAS  Google Scholar 

  • Raimondo D, Andreotti G, Saint N, Amodeo P, Renzone G, Sanseverino M et al (2005) A folding-dependent mechanism of antimicrobial peptide resistance to degradation unveiled by solution structure of distinctin. Proc Natl Acad Sci USA 102:6309–6314

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi AC (2002) Antimicrobial peptides from amphibian skin: an expanding scenario. Curr Opin Chem Biol 6:799–804

    Article  PubMed  CAS  Google Scholar 

  • Ritonja A, Kopitar M, Jerala R, Turk V (1989) Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Lett 255:211–214

    Article  PubMed  CAS  Google Scholar 

  • Romeo D, Skerlavaj B, Bolognesi M, Gennaro R (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 263:9573–9575

    PubMed  CAS  Google Scholar 

  • Rorman EG, Scheinker V, Grabowski GA (1992) Structure and evolution of the human prosaposin chromosomal gene. Genomics 13:312–318

    Article  PubMed  CAS  Google Scholar 

  • Rosa RD, Santini A, Fievet J, Bulet P, Destoumieux-Garzon D, Bachere E (2011) Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas. PLoS One 6:e25594

    Article  PubMed  CAS  Google Scholar 

  • Roskill MW (1989) The attribution of paintings: some case histories. In: What is art history?, 2nd edn. University of Massachusetts Press, p 19

    Google Scholar 

  • Saito T, Kawabata S, Shigenaga T, Takayenoki Y, Cho J, Nakajima H et al (1995) A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. J Biochem 117:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Sang Y, Blecha F (2009) Porcine host defense peptides: expanding repertoire and functions. Dev Comp Immunol 33:334–343

    Article  PubMed  CAS  Google Scholar 

  • Schade AL, Caroline L (1946) An iron-binding component in human blood plasma. Science 104:340–341

    Article  CAS  Google Scholar 

  • Scheetz T, Bartlett JA, Walters JD, Schutte BC, Casavant TL, McCray PB Jr (2002) Genomics-based approaches to gene discovery in innate immunity. Immunol Rev 190:137–145

    Article  PubMed  CAS  Google Scholar 

  • Scocchi M, Wang S, Zanetti M (1997) Structural organization of the bovine cathelicidin gene family and identification of a novel member. FEBS Lett 417:311–315

    Article  PubMed  CAS  Google Scholar 

  • Scott A, Weldon S, Taggart CC (2011) SLPI and elafin: multifunctional antiproteases of the WFDC family. Biochem Soc Trans 39:1437–1440

    Article  PubMed  CAS  Google Scholar 

  • Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI (1985) Primary structures of three human neutrophil defensins. J Clin Invest 76:1436–1439

    Article  PubMed  CAS  Google Scholar 

  • Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W et al (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 268:6641–6648

    PubMed  CAS  Google Scholar 

  • Selvaraj P (2011) Vitamin D, vitamin D receptor, and cathelicidin in the treatment of tuberculosis. Vitam Horm 86:307–325

    Article  PubMed  CAS  Google Scholar 

  • Silva PI Jr, Daffre S, Bulet P (2000) Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 275:33464–33470

    Article  PubMed  CAS  Google Scholar 

  • Simpson RJ, Morgan FJ (1983) Isolation and complete amino acid sequence of a basic low molecular weight protein from black swan egg white. Int J Pept Protein Res 22:476–481

    PubMed  CAS  Google Scholar 

  • Solis-Cohen S (1901) The true role of drugs in the management of consumptives, 36 edn, pp 482–486

    Google Scholar 

  • Sonawane A, Santos JC, Mishra BB, Jena P, Progida C, Sorensen OE et al (2011) Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell Microbiol 13:1601–1617

    Article  PubMed  CAS  Google Scholar 

  • Stegemann C, Tsvetkova EV, Aleshina GM, Lehrer RI, Kokryakov VN, Hoffmann R (2010) De novo sequencing of two new cyclic theta-defensins from baboon (Papio hamadryas) leukocytes by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 24:599–604

    Article  PubMed  CAS  Google Scholar 

  • Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC et al (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41:1738–1742

    PubMed  CAS  Google Scholar 

  • Stensvag K, Haug T, Sperstad SV, Rekdal O, Indrevoll B, Styrvold OB (2008) Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev Comp Immunol 32:275–285

    Article  PubMed  CAS  Google Scholar 

  • Storici P, Del SG, Schneider C, Zanetti M (1992) cDNA sequence analysis of an antibiotic dodecapeptide from neutrophils. FEBS Lett 314:187–190

    Article  PubMed  CAS  Google Scholar 

  • Tamamura H, Ikoma R, Niwa M, Funakoshi S, Murakami T, Fujii N (1993) Antimicrobial activity and conformation of tachyplesin I and its analogs. Chem Pharm Bull (Tokyo) 41:978–980

    Article  CAS  Google Scholar 

  • Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ et al (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286(498):502

    Google Scholar 

  • Teng L, Gao B, Zhang S (2012) The first chordate big defensin: Identification, expression and bioactivity. Fish Shellfish Immunol 32:572–577

    Article  PubMed  CAS  Google Scholar 

  • Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216:193–202

    Article  PubMed  CAS  Google Scholar 

  • Tomasinsig L, Zanetti M (2005) The cathelicidins–structure, function and evolution. Curr Protein Pept Sci 6:23–34

    Article  PubMed  CAS  Google Scholar 

  • Tomee JF, Koeter GH, Hiemstra PS, Kauffman HF (1998) Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option? Thorax 53:114–116

    Article  PubMed  CAS  Google Scholar 

  • Tomita M, Takase M, Bellamy W, Shimamura S (1994) A review: the active peptide of lactoferrin. Acta Paediatr Jpn 36:585–591

    Article  PubMed  CAS  Google Scholar 

  • Tongaonkar P, Tran P, Roberts K, Schaal J, Osapay G, Tran D et al (2011) Rhesus macaque theta-defensin isoforms: expression, antimicrobial activities, and demonstration of a prominent role in neutrophil granule microbicidal activities. J Leukoc Biol 89:283–290

    Article  PubMed  CAS  Google Scholar 

  • Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME (2002) Homodimeric theta-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 277:3079–3084

    Article  PubMed  CAS  Google Scholar 

  • van Dijk A, Veldhuizen EJ, Haagsman HP (2008) Avian defensins. Vet Immunol Immunopathol 124:1–18

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman N, Cole AL, Ruchala P, Waring AJ, Lehrer RI, Stuchlik O et al (2009) Reawakening retrocyclins: ancestral human defensins active against HIV-1. PLoS Biol 7:e95

    Article  PubMed  CAS  Google Scholar 

  • Vouille V, Amiche M, Nicolas P (1997) Structure of genes for dermaseptins B, antimicrobial peptides from frog skin Exon 1-encoded prepropeptide is conserved in genes for peptides of highly different structures and activities. FEBS Lett 414:27–32

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI (2003) Retrocyclin, an antiretroviral theta-defensin, is a lectin. J Immunol 170:4708–4716

    PubMed  CAS  Google Scholar 

  • Welkos S, Cote CK, Hahn U, Shastak O, Jedermann J, Bozue J et al (2011) Humanized theta-defensins (retrocyclins) enhance macrophage performance and protect mice from experimental anthrax infections. Antimicrob Agents Chemother 55:4238–4250

    Article  PubMed  CAS  Google Scholar 

  • Williams CJB (1849) On the use and administration of cod-liver oil in pulmonary consumption. Lond J Med 1–18

    Google Scholar 

  • Williams SE, Brown TI, Roghanian A, Sallenave JM (2006) SLPI and elafin: one glove, many fingers. Clin Sci (Lond) 110:21–35

    Article  CAS  Google Scholar 

  • Wong JH, Xia L, Ng TB (2007) A review of defensins of diverse origins. Curr Protein Pept Sci 8:446–459

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Hughes AL, Ando J, Matsuda Y, Cheng JF, Skinner-Noble D et al (2004) A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics 5:56

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Liu H, Yang X, Che Q, Liu R, Yang H et al (2011) Bi-functional peptides with both trypsin-inhibitory and antimicrobial activities are frequent defensive molecules in Ranidae amphibian skins. Amino Acids 43(1):309–16, PMID:21927839

    Article  PubMed  CAS  Google Scholar 

  • Yang YS, Mitta G, Chavanieu A, Calas B, Sanchez JF, Roch P et al (2000) Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Biochemistry 39:14436–14447

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7:179–196

    PubMed  CAS  Google Scholar 

  • Zanetti M, Litteri L, Gennaro R, Horstmann H, Romeo D (1990) Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules. J Cell Biol 111:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5

    Article  PubMed  CAS  Google Scholar 

  • Zhai Y, Saier MH Jr (2000) The amoebapore superfamily. Biochim Biophys Acta 1469:87–99

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kato Y (2003) Common structural properties specifically found in the CSalphabeta-type antimicrobial peptides in nematodes and molluscs: evidence for the same evolutionary origin? Dev Comp Immunol 27:499–503

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Ganz T, Lehrer RI (1995) The structure of porcine protegrin genes. FEBS Lett 368:197–202

    Article  PubMed  CAS  Google Scholar 

  • Zhu S (2007) Evidence for myxobacterial origin of eukaryotic defensins. Immunogenetics 59:949–954

    Article  PubMed  CAS  Google Scholar 

  • Zhu S (2008a) Did cathelicidins, a family of multifunctional host-defense peptides, arise from a cysteine protease inhibitor? Trends Microbiol 16:353–360

    Article  PubMed  CAS  Google Scholar 

  • Zhu S (2008b) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol Immunol 45:828–838

    Article  PubMed  CAS  Google Scholar 

  • Zhu S (2008c) Positive selection targeting the cathelin-like domain of the antimicrobial cathelicidin family. Cell Mol Life Sci 65:1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Gao B (2009) A fossil antibacterial peptide gives clues to structural diversity of cathelicidin-derived host defense peptides. FASEB J 23:13–20

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Wei L, Yamasaki K, Gallo RL (2008) Activation of cathepsin L by the cathelin-like domain of protegrin-3. Mol Immunol 45:2531–2536

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Mercier C, Koussounadis A, Secombes C (2007) Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 44:638–647

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank the National Institutes of Health for providing four decades of grant support, the University of California for having me on its faculty, and the colleagues who assisted me over the years. I would probably do it all over again, even though AMPs are only nonspecific.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert I. Lehrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel AG

About this chapter

Cite this chapter

Lehrer, R.I. (2013). Evolution of Antimicrobial Peptides: A View from the Cystine Chapel. In: Hiemstra, P., Zaat, S. (eds) Antimicrobial Peptides and Innate Immunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0541-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0541-4_1

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0540-7

  • Online ISBN: 978-3-0348-0541-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics