Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1571 Accesses

Abstract

Herein we review the state of knowledge regarding the role of IL-17 in tuberculosis (TB). IL-17 is induced following exposure to mycobacteria in mice and humans, yet its role in protection and the immunopathologic consequences of infection is not defined. It appears that the IL-17 response to mycobacterial infection is dependent on IL-23 and that the induction of this cytokine is dependent upon pathogen-associated molecules on the surface of the mycobacterium. While there is evidence for a protective role, there is also evidence for a pathologic role; it is therefore critical to decipher the impact of IL-17 so that preventive and therapeutic measures can be appropriately tailored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flynn J, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129

    Article  PubMed  CAS  Google Scholar 

  2. North R, Jung Y (2004) Immunity to tuberculosis. Annu Rev Immunol 22:599–623

    Article  PubMed  CAS  Google Scholar 

  3. Cooper AM (2009) Cell mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422

    Article  PubMed  CAS  Google Scholar 

  4. Scott-Browne J, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot J, Rudensky A, Bevan M, Urdahl K (2007) Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med 204:2159–2169

    Article  PubMed  CAS  Google Scholar 

  5. Koch M, Tucker-Heard G, Perdue N, Killebrew J, Urdahl K, Campbell D (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10:595–602

    Article  PubMed  CAS  Google Scholar 

  6. Khader S, Pearl J, Sakamoto K, Gilmartin L, Bell G, Jelley-Gibbs D, Ghilardi N, deSauvage F, Cooper A (2005) IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol 175:788–795

    PubMed  CAS  Google Scholar 

  7. Scriba T, Kalsdorf B, Abrahams D-A, Isaacs F, Hofmeister J, Black G, Hassan H, Wilkinson R, Walzl G, Gelderbloem S et al (2008) Distinct, specific IL-17 and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. J Immunol 180:1962–1970

    PubMed  CAS  Google Scholar 

  8. Umemura M, Yahagi A, Hamada S, Begum M, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y et al (2007) IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin Infection. J Immunol 178:3786–3796

    PubMed  CAS  Google Scholar 

  9. Lockhart E, Green A, Flynn J (2006) IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177:4662–4669

    PubMed  CAS  Google Scholar 

  10. D’Souza CD, Cooper AM, Frank AA, Mazzaccaro RJ, Bloom BR, Orme IM (1997) An anti-inflammatory role for γδ T lymphocytes in acquired immunity to Mycobacterium tuberculosis. J Immunol 158:1217–1221

    PubMed  Google Scholar 

  11. Romani L, Fallarino F, De Luca A, Montagnoli C, D’Angelo C, Zelante T, Vacca C, Bistoni F, Fioretti M, Grohmann U et al (2008) Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451:211–215

    Article  PubMed  CAS  Google Scholar 

  12. Cooper AM, Segal BH, Frank AA, Holland SM, Orme IM (2000) Transient loss of resistance to pulmonary tuberculosis in p47phox−/− mice. Infect Immun 68:1231–1234

    Article  PubMed  CAS  Google Scholar 

  13. Michel M, Keller A, Paget C, Fujio M, Trottein F, Savage P, Wong C, Schneider E, Dy M, Leite-de-Moraes M (2007) Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204:995–1001

    Article  PubMed  CAS  Google Scholar 

  14. Weaver C, Hatton R, Mangan P, Harrington L (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  PubMed  CAS  Google Scholar 

  15. Stockinger B, Veldhoen M, Martin B (2007) Th17 T cells: linking innate and adaptive immunity. Semin Immunol 19:353–361

    Article  PubMed  CAS  Google Scholar 

  16. Khader S, Bell G, Pearl J, Fountain J, Rangel-Moreno J, Cilley G, Shen F, Eaton S, Gaffen S, Swain S et al (2007) IL-23 and IL-17 in establishment of protective pulmonary CD4+ T cell responses upon vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8:369–377

    Article  PubMed  CAS  Google Scholar 

  17. Cruz A, Khader S, Torrado E, Fraga A, Pearl J, Pedrosa J, Cooper A, Castro A (2006) Cutting edge: IFN-γ regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J Immunol 177:1416–1420

    PubMed  CAS  Google Scholar 

  18. Stockinger B, Veldhoen M (2007) Differentiation and function of Th17 T cells. Curr Opin Immunol 19:281–286

    Article  PubMed  CAS  Google Scholar 

  19. Ivanov I, Zhou L, Littman D (2007) Transcriptional regulation of Th17 cell differentiation. Semin Immunol 19:409–417

    Article  PubMed  CAS  Google Scholar 

  20. McGeachy M, Cua D (2007) The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol 19:372–376

    Article  PubMed  CAS  Google Scholar 

  21. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341

    Article  PubMed  CAS  Google Scholar 

  22. Masters SL, Mielke LA, Cornish AL, Sutton CE, O’Donnell J, Cengia LH, Roberts AW, Wicks IP, Mills KHG, Croker BA (2010) Regulation of interleukin-1[beta] by interferon-[gamma] is species specific, limited by suppressor of cytokine signalling 1 and influences interleukin-17 production. EMBO Rep 11:640–646

    Article  PubMed  CAS  Google Scholar 

  23. Sutherland JS, Adetifa IM, Hill PC, Adegbola RA, Ota MOC (2009) Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur J Immunol 39:723–729

    Article  PubMed  CAS  Google Scholar 

  24. Sutherland JS, de Jong BC, Jeffries DJ, Adetifa IM, Ota MOC (2010) Production of TNF-α, IL-12(p40) and IL-17 can discriminate between active TB disease and latent infection in a West African cohort. PLoS One 5:e12365

    Article  PubMed  Google Scholar 

  25. Stern J, Keskin D, Romero V, Zuniga J, Encinales L, Li C, Awad C, Yunis E (2009) Molecular signatures distinguishing active from latent tuberculosis in peripheral blood mononuclear cells, after in vitro antigenic stimulation with purified protein derivative of tuberculin (PPD) or Candida: a preliminary report. Immunol Res 45:1–12

    Article  PubMed  CAS  Google Scholar 

  26. Chen Y-C, Chin C-H, Liu S-F, Wu C-C, Tsen C-C, Wang Y-H, Chao T-Y, Lie C-H, Chen C-J, Wang C-C et al (2011) Prognostic values of serum IP-10 and IL-17 in patients with pulmonary tuberculosis. Dis Markers 31:101–110

    PubMed  Google Scholar 

  27. Djoba Siawaya JF, Beyers N, Van Helden P, Walzl G (2009) Differential cytokine secretion and early treatment response in patients with pulmonary tuberculosis. Clin Exp Immunol 156:69–77

    Article  PubMed  CAS  Google Scholar 

  28. de Steenwinkel J, de Knegt G, ten Kate M, Verbrugh H, Ottenhoff T, Bakker-Woudenberg I (2011) Dynamics of interferon-gamma release assay and cytokine profiles in blood and respiratory tract specimens from mice with tuberculosis and the effect of therapy. Eur J Clin Microbial Infect Dis 31:1195–1201

    Google Scholar 

  29. Acosta-Rodriguez E, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646

    Article  PubMed  CAS  Google Scholar 

  30. Qiao D, Yang BY, Li L, Ma JJ, Zhang XL, Lao SH, Wu CY (2011) ESAT-6- and CFP-10-specific Th1, Th22 and Th17 cells in tuberculous pleurisy may contribute to the local immune response against Mycobacterium tuberculosis infection. Scand J Immunol 73:330–337

    Article  PubMed  CAS  Google Scholar 

  31. Wang T, Lv M, Qian Q, Nie Y, Yu L, Hou Y (2011) Increased frequencies of T helper type 17 cells in tuberculous pleural effusion. Tuberculosis 91:231–237

    Article  PubMed  CAS  Google Scholar 

  32. Matthews K, Wilkinson KA, Kalsdorf B, Roberts T, Diacon A, Walzl G, Wolske J, Ntsekhe M, Syed F, Russell J et al (2011) Predominance of interleukin-22 over interleukin-17 at the site of disease in human tuberculosis. Tuberculosis 91:587–593

    Article  PubMed  CAS  Google Scholar 

  33. Stark M, Huo Y, Burcin T, Morris M, Olson T, Ley K (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22:285–294

    Article  PubMed  CAS  Google Scholar 

  34. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J et al (2001) Requirement of interleukin-17 receptor signalling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194:519–527

    Article  PubMed  CAS  Google Scholar 

  35. Kolls J, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–476

    Article  PubMed  CAS  Google Scholar 

  36. Hsu H, Yang P, Wang J, Wu Q, Myers R, Chen J, Yi J, Guentert T, Tousson A, Stanus A et al (2007) Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 9:166–175

    Article  PubMed  Google Scholar 

  37. Mangan P, Harrington L, O’Quinn D, Helms W, Bullard D, Elson C, Hatton R, Wahl S, Schoeb T, Weaver C (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234

    Article  PubMed  CAS  Google Scholar 

  38. Huang W, Na L, Fidel P, Schwarzenberger P (2004) Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 190:624–631

    Article  PubMed  CAS  Google Scholar 

  39. Wu Q, Martin R, Rino J, Breed R, Torres R, Chu H (2007) IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect 9:78–86

    Article  PubMed  CAS  Google Scholar 

  40. Chackerian A, Chen S, Brodie S, Mattson J, McClanahan T, Kastelein R, Bowman E (2006) Neutralization or absence of the interleukin-23 pathway does not compromise immunity to mycobacterial infection. Infect Immun 74:6092–6099

    Article  PubMed  CAS  Google Scholar 

  41. Happel K, Lockhart E, Mason C, Porretta E, Keoshkerian E, Odden A, Nelson S, Ramsay A (2005) Pulmonary interleukin-23 gene delivery increases local T-cell immunity and controls growth of Mycobacterium tuberculosis in the lungs. Infect Immun 73:5782–5788

    Article  PubMed  CAS  Google Scholar 

  42. Khader SA, Guglani L, Rangel-Moreno J, Gopal R, Fallert Junecko BA, Fountain JJ, Martino C, Pearl JE, Tighe M, Lin YY et al (2011) IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J Immunol 187:5402–5407

    Article  PubMed  CAS  Google Scholar 

  43. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA, Reinhart TA, McAllister F, Edeal J, Gaus K et al (2008) IL-22 mediates mucosal host defense against gram-negative bacterial pneumonia. Nat Med 14:275–281

    Article  PubMed  CAS  Google Scholar 

  44. Okamoto YY, Umemura M, Yahagi A, O’Brien R, Ikuta K, Kishihara K, Hara H, Nakae S, Iwakura Y, Matsuzaki G (2010) Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol 184:4414–4422

    Article  Google Scholar 

  45. Redford P, Boonstra A, Read S, Pitt J, Graham C, Stavropoulos E, Bancroft G, O’Garra A (2010) Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur J Immunol 40:2200–2210

    Article  PubMed  CAS  Google Scholar 

  46. Sumaria N, Roediger B, Ng LG, Qin J, Pinto R, Cavanagh LL, Shklovskaya E, de St Groth BF, Triccas JA, Weninger W (2011) Cutaneous immunosurveillance by self-renewing dermal γδ T cells. J Exp Med 208:505–518

    Article  PubMed  CAS  Google Scholar 

  47. Wozniak TM, Saunders BM, Ryan AA, Britton WJ (2010) Mycobacterium bovis BCG-specific Th17 cells confer partial protection against Mycobacterium tuberculosis infection in the absence of gamma interferon. Infect Immun 78:4187–4194

    Article  PubMed  CAS  Google Scholar 

  48. Curtis MM, Rowell E, Shafiani S, Negash A, Urdahl KB, Wilson CB, Way SS (2010) Fidelity of pathogen-specific CD4+ T cells to the Th1 lineage is controlled by exogenous cytokines, interferon-γ expression, and pathogen lifestyle. Cell Host Microbe 8:163–173

    Article  PubMed  CAS  Google Scholar 

  49. Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J, Jouanguy E, Boisson-Dupuis S, Fieschi C, Picard C et al (2006) Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 18:347–361

    Article  PubMed  CAS  Google Scholar 

  50. Hoeve M, de Boer T, Langenberg D, Sanal O, Verreck F, Ottenhoff T (2003) IL-12 receptor deficiency revisited: IL-23-mediated signaling is also impaired in human genetic IL-12 receptor beta1 deficiency. Eur J Immunol 33:3393–3397

    Article  PubMed  CAS  Google Scholar 

  51. Hoeve M, Savage N, de Boer T, Langenberg D, de Waal Malefyt R, Ottenhoff T, Verreck F (2006) Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol 36:661–670

    Article  PubMed  CAS  Google Scholar 

  52. Cargill M, Schrodi S, Chang M, Garcia V, Brandon R, Callis K, Matsunami N, Ardlie K, Civello D, Catanese J et al (2007) A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80:273–290

    Article  PubMed  CAS  Google Scholar 

  53. Duerr R, Taylor K, Brant S, Rioux J, Silverberg M, Daly M, Steinhart A, Abraham C, Regueiro M, Griffiths A et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463

    Article  PubMed  CAS  Google Scholar 

  54. Stolberg VR, Chiu B-C, Schmidt BM, Kunkel SL, Sandor M, Chensue SW (2011) CC chemokine receptor 4 contributes to innate NK and chronic stage T helper cell recall responses during Mycobacterium bovis infection. Am J Pathol 178:233–244

    Article  PubMed  CAS  Google Scholar 

  55. Wozniak T, Ryan A, Triccas J, Britton W (2006) Plasmid interleukin-23 (IL-23), but not plasmid IL-27, enhances the protective efficacy of a DNA vaccine against Mycobacterium tuberculosis infection. Infect Immun 74:557–565

    Article  PubMed  CAS  Google Scholar 

  56. Wozniak T, Ryan A, Britton W (2006) Interleukin-23 restores immunity to Mycobacterium tuberculosis infection in IL-12p40-deficient mice and is not required for the development of IL-17-secreting T cell responses. J Immunol 177:8684–8692

    PubMed  CAS  Google Scholar 

  57. Stumhofer J, Laurence A, Wilson E, Huang E, Tato C, Johnson L, Villarino A, Huang Q, Yoshimura A, Sehy D et al (2006) Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 7:937–945

    Article  PubMed  CAS  Google Scholar 

  58. Batten M, Li J, Yi S, Kljavin N, Danilenko D, Lucas S, Lee J, de Sauvage F, Ghilardi N (2006) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 7:929–936

    Article  PubMed  CAS  Google Scholar 

  59. Gopal R, Lin Y, Obermajer N, Slight S, Nuthalapati N, Ahmed M, Kalinski P, Khader SA (2012) IL-23-dependent IL-17 drives Th1-cell responses following Mycobacterium bovis BCG vaccination. Eur J Immunol 42:364–373

    Article  PubMed  CAS  Google Scholar 

  60. Desel C, Dorhoi A, Bandermann S, Grode L, Eisele B, Kaufmann SHE (2011) Recombinant BCG ΔureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J Infect Dis 204:1573–1584

    Article  PubMed  CAS  Google Scholar 

  61. Vordermeier HM, Villarreal-Ramos B, Cockle PJ, McAulay M, Rhodes SG, Thacker T, Gilbert SC, McShane H, Hill AVS, Xing Z et al (2009) Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun 77:3364–3373

    Article  PubMed  CAS  Google Scholar 

  62. Scriba TJ, Tameris M, Mansoor N, Smit E, van der Merwe L, Isaacs F, Keyser A, Moyo S, Brittain N, Lawrie A et al (2010) Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol 40:279–290

    Article  PubMed  CAS  Google Scholar 

  63. de Cassan SC, Pathan AA, Sander CR, Minassian A, Rowland R, Hill AVS, McShane H, Fletcher HA (2010) Investigating the induction of vaccine-induced Th17 and regulatory T cells in healthy, Mycobacterium bovis BCG-immunized adults vaccinated with a new tuberculosis vaccine, MVA85A. Clin Vaccine Immunol 17:1066–1073

    Article  PubMed  Google Scholar 

  64. Griffiths KL, Pathan AA, Minassian AM, Sander CR, Beveridge NER, Hill AVS, Fletcher HA, McShane H (2011) Th1/Th17 cell induction and corresponding reduction in ATP consumption following vaccination with the novel Mycobacterium tuberculosis vaccine MVA85A. PLoS One 6:e23463

    Article  PubMed  CAS  Google Scholar 

  65. Lalor MK, Smith SG, Floyd S, Gorak-Stolinska P, Weir RE, Blitz R, Branson K, Fine PE, Dockrell HM (2010) Complex cytokine profiles induced by BCG vaccination in UK infants. Vaccine 28:1635–1641

    Article  PubMed  CAS  Google Scholar 

  66. Burl S, Adetifa UJ, Cox M, Touray E, Ota MO, Marchant A, Whittle H, McShane H, Rowland-Jones SL, Flanagan KL (2010) Delaying bacillus Calmette-Guérin vaccination from birth to 4 1/2 months of age reduces postvaccination Th1 and IL-17 responses but leads to comparable mycobacterial responses at 9 months of age. J Immunol 185:2620–2628

    Article  PubMed  CAS  Google Scholar 

  67. Lalor MK, Floyd S, Gorak-Stolinska P, Ben-Smith A, Weir RE, Smith SG, Newport MJ, Blitz R, Mvula H, Branson K et al (2011) BCG vaccination induces different cytokine profiles following infant BCG vaccination in the UK and Malawi. J Infect Dis 204:1075–1085

    Article  PubMed  CAS  Google Scholar 

  68. Kagina BMN, Abel B, Scriba TJ, Hughes EJ, Keyser A, Soares A, Gamieldien H, Sidibana M, Hatherill M, Gelderbloem S et al (2010) Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guérin vaccination of newborns. Am J Respir Crit Care Med 182:1073–1079

    Article  PubMed  CAS  Google Scholar 

  69. Rhoades ER, Frank AA, Orme IM (1997) Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber Lung Dis 78:57–66

    Article  PubMed  CAS  Google Scholar 

  70. Aujla S, Dubin P, Kolls J (2007) Th17 cells and mucosal host defense. Semin Immunol 19:377–382

    Article  PubMed  CAS  Google Scholar 

  71. Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna M, Vacca C, Conte C, Mosci P et al (2007) IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 37:2695–2706

    Article  PubMed  CAS  Google Scholar 

  72. Seiler P, Aichele P, Bandermann S, Hauser A, Lu B, Gerard N, Gerard C, Ehlers S, Mollenkopf H, Kaufmann S (2003) Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol 33:2676–2686

    Article  PubMed  CAS  Google Scholar 

  73. Keller C, Hoffmann R, Lang R, Brandau S, Hermann C, Ehlers S (2006) Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun 74:4295–4309

    Article  PubMed  CAS  Google Scholar 

  74. Cruz A, Fraga A, Fountain J, Rangel-Moreno J, Torrado E, Saraiva M, Pereira D, Randall T, Pedrosa J, Cooper A et al (2010) Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J Exp Med 207:1609–1616

    Article  PubMed  CAS  Google Scholar 

  75. Desvignes L, Ernst JD (2009) Interferon-γ-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31:974–985

    Article  PubMed  CAS  Google Scholar 

  76. Nandi B, Behar SM (2011) Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med 208:2251–2262

    Article  PubMed  CAS  Google Scholar 

  77. Basile JI, Geffner LJ, Romero MM, Balboa L, Sabio y García C, Ritacco V, García A, Cuffré M, Abbate E, López B et al (2011) Outbreaks of Mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. J Infect Dis 204:1054–1064

    Article  PubMed  CAS  Google Scholar 

  78. Ulrichs T, Kosmiadi G, Trusov V, Jörg S, Pradl L, Titukhina M, Mishenko V, Gushina N, Kaufmann S (2004) Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol 204:217–228

    Article  PubMed  Google Scholar 

  79. Tsai M, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, Tufariello J, Flynn J, Chan J (2006) Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8:218–232

    Article  PubMed  CAS  Google Scholar 

  80. Kahnert A, Höpken U, Stein M, Bandermann S, Lipp M, Kaufmann S (2007) Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J Infect Dis 195:46–54

    Article  PubMed  CAS  Google Scholar 

  81. Bosio C, Gardner D, Elkins K (2000) Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J Immunol 164:6417–6425

    PubMed  CAS  Google Scholar 

  82. Maglione P, Xu J, Chan J (2007) B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol 178:7222–7234

    PubMed  CAS  Google Scholar 

  83. Zhang M, Wang Z, Graner MW, Yang L, Liao M, Yang Q, Gou J, Zhu Y, Wu C, Liu H et al (2011) B cell infiltration is associated with the increased IL-17 and IL-22 expression in the lungs of patients with tuberculosis. Cell Immunol 270:217–223

    Article  PubMed  CAS  Google Scholar 

  84. Khader S, Rangel-Moreno J, Fountain J, Martino C, Reiley W, Pearl J, Winslow G, Woodland D, Randall T, Cooper A (2009) In a murine tuberculosis model, the absence of homeostatic chemokines delays granuloma formation and protective immunity. J Immunol 183:8004–8014

    Article  PubMed  CAS  Google Scholar 

  85. Aggarwal S, Ghilardi N, Xie M, de Sauvage FJ, Gurney AL (2002) Interleukin-23 promotes a distinct CD4+ T cell activation state characterised by the production of IL-17. J Biol Chem 278:1910–1914

    Article  PubMed  Google Scholar 

  86. Leibundgut-Landmann S, Groß O, Robinson M, Osorio F, Slack E, Tsoni S, Schweighoffer E, Tybulewicz V, Brown G, Ruland J et al (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8:630–638

    Article  PubMed  CAS  Google Scholar 

  87. Yadav M, Schorey J (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108:3168–3175

    Article  PubMed  CAS  Google Scholar 

  88. Rothfuchs A, Bafica A, Feng C, Egen J, Williams D, Brown G, Sher A (2007) Dectin-1 interaction with Mycobacterium tuberculosis leads to enhanced IL-12p40 production by splenic dendritic cells. J Immunol 179:3463–3471

    PubMed  CAS  Google Scholar 

  89. Zenaro E, Donini M, Dusi S (2009) Induction of Th1/Th17 immune response by Mycobacterium tuberculosis: role of dectin-1, mannose receptor, and DC-SIGN. J Leukoc Biol 86:1393–1401

    Article  PubMed  CAS  Google Scholar 

  90. van de Veerdonk F, Teirlinck A, Kleinnijenhui J, Jan Kullberg B, van Creval R, van der Meer J, Joosten L, Netea M (2010) Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1. J Leukoc Biol 88(2):227–232

    Article  PubMed  Google Scholar 

  91. Hohl T, Van Epps H, Rivera A, Morgan L, Chen P, Feldmesser M, Pamer E (2005) Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog 1:e30

    Article  PubMed  Google Scholar 

  92. Steele C, Rapaka R, Metz A, Pop S, Williams D, Gordon S, Kolls J, Brown G (2005) The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 1:e42

    Article  PubMed  Google Scholar 

  93. Kano S, Sato K, Morishita Y, Vollstedt S, Kim S, Bishop K, Honda K, Kubo M, Taniguchi T (2008) The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and T(H)1 versus T(H)-17 differentiation of CD4(+) T cells. Nat Immunol 9:34–41

    Article  PubMed  CAS  Google Scholar 

  94. Rao V, Fujiwara N, Porcelli S, Glickman M (2005) Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201:535–543

    Article  PubMed  CAS  Google Scholar 

  95. Kursar M, Koch M, Mittrücker H, Nouailles G, Bonhagen K, Kamradt T, Kaufmann S (2007) Cutting edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J Immunol 178:2661–2665

    PubMed  CAS  Google Scholar 

  96. Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207:1409–1420

    Article  PubMed  CAS  Google Scholar 

  97. Ishikawa E, Ishikawa T, Morita Y, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888

    Article  PubMed  CAS  Google Scholar 

  98. Schoenen H, Bodendorfer B, Hitchens K, Manzanero S, Werninghaus K, Nimmerjahn F, Agger E, Stenger S, Andersen P, Ruland J et al (2010) Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol 184:2756–2760

    Article  PubMed  CAS  Google Scholar 

  99. Paidipally P, Periasamy S, Barnes PF, Dhiman R, Indramohan M, Griffith DE, Cosman D, Vankayalapati R (2009) NKG2D-dependent IL-17 production by human T cells in response to an intracellular pathogen. J Immunol 183:1940–1945

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Cooper, A.M. (2013). Is IL-17 Required to Control Tuberculosis?. In: Quesniaux, V., Ryffel, B., Padova, F. (eds) IL-17, IL-22 and Their Producing Cells: Role in Inflammation and Autoimmunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0522-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0522-3_14

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0521-6

  • Online ISBN: 978-3-0348-0522-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics