Skip to main content

Fractional Variational Calculus of Variable Order

  • Conference paper
  • First Online:
Advances in Harmonic Analysis and Operator Theory

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 229))

Abstract

We study the fundamental problem of the calculus of variations with variable order fractional operators. Fractional integrals are considered in the sense of Riemann–Liouville while derivatives are of Caputo type.

Mathematics Subject Classification (2010). 26A33; 34A08; 49K05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Almeida, S. Samko, Fractional and hypersingular operators in variable exponent spaces on metric measure spaces. Mediterr. J. Math. 6 (2009), 215–232.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Almeida, A.B. Malinowska, D.F.M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string. J. Math. Phys. 51 (2010), 033503, 12 pp.

    Google Scholar 

  3. R. Almeida, D.F.M. Torres, Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22 (2009), 1816–1820.

    Article  MathSciNet  MATH  Google Scholar 

  4. T.M. Atanackovic, S. Pilipovic, Hamilton’s principle with variable order fractional derivatives. Fract. Calc. Appl. Anal. 14 (2011), 94–109.

    MathSciNet  Google Scholar 

  5. N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29 (2011), 417–437.

    Article  MathSciNet  MATH  Google Scholar 

  6. N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete-time fractional variational problems. Signal Process. 91 (2011), 513–524.

    Article  MATH  Google Scholar 

  7. C.F.M. Coimbra, Mechanics with variable-order differential operators. Ann. Phys. 12 (2003), 692–703.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Cresson, Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48 (2007), 033504, 34 pp.

    Google Scholar 

  9. G. Diaz, C.F.M. Coimbra, Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dynam. 56 (2009), 145–157.

    Article  MathSciNet  MATH  Google Scholar 

  10. G.S.F. Frederico, D.F.M. Torres, Fractional conservation laws in optimal control theory. Nonlinear Dynam. 53 (2008), 215–222.

    Article  MathSciNet  MATH  Google Scholar 

  11. G.S.F. Frederico, D.F.M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217 (2010), 1023–1033.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Ivady, A note on a gamma function inequality. J. Math. Inequal. 3 (2009), 227– 236.

    Article  MathSciNet  Google Scholar 

  13. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006.

    Google Scholar 

  14. M. Klimek, Fractional sequential mechanics – models with symmetric fractional derivative, Czechoslovak J. Phys. 51 (2001), no. 12, 1348–1354.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Klimek, Lagrangian and Hamiltonian fractional sequential mechanics, Czechoslovak J. Phys. 52 (2002), no. 11, 1247–1253.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Klimek, Stationarity-conservation laws for fractional differential equations with variable coefficients. J. Phys. A 35 (2002), 6675–6693.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Klimek, Lagrangian fractional mechanics – a noncommutative approach. Czechoslovak J. Phys. 55 (2005), 1447–1453.

    Article  MathSciNet  Google Scholar 

  18. M. Klimek, On solutions of linear fractional differential equations of a variational type. The Publishing Office of Czenstochowa University of Technology, Czestochowa, 2009.

    Google Scholar 

  19. C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dynam. 29 (2002), 57–98.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.B. Malinowska, D.F.M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl. 59 (2010), 3110–3116.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Mozyrska, D.F.M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative. Carpathian J. Math. 26 (2010), 210–221.

    MathSciNet  MATH  Google Scholar 

  22. D. Mozyrska, D.F.M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems. Signal Process. 91 (2011), 379–385.

    Article  MATH  Google Scholar 

  23. T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75 (2012), 1507–1515.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Generalized fractional calculus with applications to the calculus of variations, Comput. Math. Appl. 64 (2012), 3351–3366.

    Article  MathSciNet  Google Scholar 

  25. T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Fractional calculus of variations in terms of a generalized fractional integral with applications to physics, Abstr. Appl. Anal. 2012 (2012), Art. ID 871912, 24 pp.

    Google Scholar 

  26. H.T.C. Pedro, M.H. Kobayashi, J.M.C. Pereira, C.F.M. Coimbra, Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14 (2008), 1569–1672.

    Article  MathSciNet  Google Scholar 

  27. I. Podlubny, Fractional differential equations. Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999.

    Google Scholar 

  28. L.E.S. Ramirez, C.F.M. Coimbra, On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equ. 2010 (2010), Art. ID 846107, 16 pp.

    Google Scholar 

  29. L.E.S. Ramirez and C.F.M. Coimbra, On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys. D 240 (2011), 1111–1118.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E (3) 53 (1996), 1890–1899.

    Google Scholar 

  31. F. Riewe, Mechanics with fractional derivatives. Phys. Rev. E (3) 55 (1997), 3581– 3592.

    Google Scholar 

  32. B. Ross, S.G. Samko, Fractional integration operator of a variable order in the Hölder spaces H λ(x) . Internat. J. Math. Math. Sci. 18 (1995), 777–788.

    Article  MathSciNet  MATH  Google Scholar 

  33. S.G. Samko, Fractional integration and differentiation of variable order. Anal. Math. 21 (1995), 213–236.

    Article  MathSciNet  MATH  Google Scholar 

  34. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives, translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.

    Google Scholar 

  35. S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1 (1993), 277–300.

    Article  MathSciNet  MATH  Google Scholar 

  36. J.A. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1140–1153.

    Article  MathSciNet  MATH  Google Scholar 

  37. B. van Brunt, The calculus of variations. Universitext, Springer, New York, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Odzijewicz .

Editor information

Editors and Affiliations

Additional information

To Professor Stefan Samko on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Odzijewicz, T., Malinowska, A.B., Torres, D.F.M. (2013). Fractional Variational Calculus of Variable Order. In: Almeida, A., Castro, L., Speck, FO. (eds) Advances in Harmonic Analysis and Operator Theory. Operator Theory: Advances and Applications, vol 229. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0516-2_16

Download citation

Publish with us

Policies and ethics