Skip to main content

Optimal Re-centering Bounds, with Applications to Rosenthal-type Concentration of Measure Inequalities

  • Conference paper
  • First Online:
High Dimensional Probability VI

Part of the book series: Progress in Probability ((PRPR,volume 66))

Abstract

For any nonnegative Borel-measurable function f such that \(f(x)\;=\;0\) if and only if \(x\;=\;0\), the best constant c f in the inequality \(Ef(X\;-\;E\;X)\leqslant c_f E\;f(X)\) for all random variables X with a finite mean is obtained. Properties of the constant c f in the case when \(f\;=\;|\cdot|^p\) for \(p>0\) are studied. Applications to concentration of measure in the form of Rosenthal-type bounds on the moments of separately Lipschitz functions on product spaces are given.

Mathematics Subject Classification (2010). Primary 60E15; Secondary 46B09.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Bentkus, On measure concentration for separately Lipschitz functions in product spaces, Israel J. Math. 158 (2007), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Bolthausen and F. Götze, The rate of convergence for multivariate sampling statistics, Ann. Statist. 21 (1993), no. 4, 1692–1710.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Boucheron, O. Bousquet, G. Lugosi, and P. Massart, Moment inequalities for functions of independent random variables, Ann. Probab. 33 (2005), no. 2, 514–560.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42.

    Article  MathSciNet  MATH  Google Scholar 

  5. L.H.Y. Chen and Q.-M. Shao, Stein’s method for normal approximation, An introduction to Stein’s method, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 4, Singapore Univ. Press, Singapore, 2005, pp. 1–59.

    Google Scholar 

  6. R. Ibragimov and Sh. Sharakhmetov, On an exact constant for the Rosenthal inequality, Teor. Veroyatnost. i Primenen. 42 (1997), no. 2, 341–350.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Ibragimov and Sh. Sharakhmetov, On extremal problems and best constants in moment inequalities, Sankhyā Ser. A 64 (2002), no. 1, 42–56.

    MathSciNet  MATH  Google Scholar 

  8. V.V. Jurinskiĭ, Exponential estimates for large deviations, Teor. Verojatnost. i Primenen. 19 (1974), 152–154.

    MathSciNet  Google Scholar 

  9. R. Latała and K. Oleszkiewicz, Between Sobolev and Poincaré, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1745, Springer, Berlin, 2000, pp. 147–168.

    Google Scholar 

  10. R. Latała, Estimation of moments of sums of independent real random variables, Ann. Probab. 25 (1997), no. 3, 1502–1513.

    Google Scholar 

  11. M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  12. M. Ledoux and K. Oleszkiewicz, On measure concentration of vector-valued maps, Bull. Pol. Acad. Sci. Math. 55 (2007), no. 3, 261–278.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Ledoux and M. Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991, Isoperimetry and processes.

    Google Scholar 

  14. C. McDiarmid, On the method of bounded differences, Surveys in combinatorics, 1989 (Norwich, 1989), London Math. Soc. Lecture Note Ser., vol. 141, Cambridge Univ. Press, Cambridge, 1989, pp. 148–188.

    Google Scholar 

  15. C. McDiarmid, Concentration, Probabilistic methods for algorithmic discrete mathematics,Algorithms Combin., vol. 16, Springer, Berlin, 1998, pp. 195–248.

    Google Scholar 

  16. I. Pinelis, Exact bounds on the truncated-tilted mean, with applications, preprint, http://arxiv.org/find/all/1/au:+pinelis/0/1/0/all/0/1.

  17. I. Pinelis, On the von Bahr–Esseen inequality, preprint, http://arxiv.org/find/all/1/au:+pinelis/0/1/0/all/0/1.

  18. I. Pinelis and R. Molzon, Berry-Esséen bounds for general nonlinear statistics, with applications to Pearson’s and non-central Student’s and Hotelling’s, (preprint), arXiv:0906.0177v1 [math.ST].

    Google Scholar 

  19. I.F. Pinelis, Estimates for moments of infinite dimensional martingales, Math.Notes 27 (1980), no. 5–6, 459–462, MR580071.

    Google Scholar 

  20. I.F. Pinelis, Limit theorems on large deviations for sums of infinite dimensional random variables when the Cramer’s condition is violated, Tech. Report 1674–81, All-Russian Scientific and Technical Information Institute (VINITI), 1981, April 1981.

    Google Scholar 

  21. I.F. Pinelis, On some inequalities for large deviations, Teor. Veroyatnost. i Primenen. 26 (1981), no. 2, 428–430.

    MathSciNet  Google Scholar 

  22. I.F. Pinelis and A.I. Sakhanenko, Remarks on inequalities for probabilities of large deviations, Theory Probab. Appl. 30 (1985), no. 1, 143–148.

    Article  MathSciNet  Google Scholar 

  23. I. Pinelis, Optimum bounds for the distributions of martingales in Banach spaces, Ann. Probab. 22 (1994), no. 4, 1679–1706.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Pinelis, On normal domination of (super)martingales, Electron. J. Probab. 11 (2006), no. 39, 1049–1070.

    MathSciNet  MATH  Google Scholar 

  25. I. Pinelis, Optimal two-value zero-mean disintegration of zero-mean random variables, Electron. J. Probab. 14 (2009), no. 26, 663–727.

    MathSciNet  MATH  Google Scholar 

  26. I. Pinelis, Exact lower bounds on the exponential moments of Winsorized and truncated random variables, J. App. Probab. 48 (2011), 547–560.

    Article  MathSciNet  MATH  Google Scholar 

  27. H.P. Rosenthal, On the subspaces of L p (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273–303.

    Article  MathSciNet  MATH  Google Scholar 

  28. S.A. Utev, Extremal problems in moment inequalities, Limit theorems of probability theory, Trudy Inst. Mat., vol. 5, “Nauka” Sibirsk. Otdel., Novosibirsk, 1985, pp. 56– 75, 175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Pinelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Pinelis, I. (2013). Optimal Re-centering Bounds, with Applications to Rosenthal-type Concentration of Measure Inequalities. In: Houdré, C., Mason, D., Rosiński, J., Wellner, J. (eds) High Dimensional Probability VI. Progress in Probability, vol 66. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0490-5_6

Download citation

Publish with us

Policies and ethics