Skip to main content

Slepian’s Inequality, Modularity and Integral Orderings

  • Conference paper
  • First Online:
High Dimensional Probability VI

Part of the book series: Progress in Probability ((PRPR,volume 66))

Abstract

Slepian’s inequality comes in many variants under different sets of regularity conditions. Unfortunately, some of these variants are wrong and other variants are imposing to strong regularity conditions. The first part of this paper contains a unified version of Slepian’s inequality under minimal regularity conditions, covering all the variants I know about. It is well known that Slepian’s inequality is closely connected to integral orderings in general and the supermodular ordering in particular. In the last part of the paper I explore this connection and corrects some results in the theory of integral orderings.

Mathematics Subject Classification (2010). Primary 60E15; Secondary 60A10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunford, N. and Schwartz, J.T. (1950): Linear Operator, Part 1. Interscience Publishers, Inc., New York.

    Google Scholar 

  2. Fernique, X. (2012): Regularité des trajectoires des functions alétoires Gaussiennes. Probability in Banach Spaces at Saint Flour (Ecole d’Eté de Probabilités de Saint Flour IV, 1974), Springer Verlag, Berlin and Heidelberg.

    Google Scholar 

  3. Hoffmann-Jørgensen, J. (1994): Probability with a view towards statistics, vol. 1+2. Chapman & Hall, New York and London.

    Google Scholar 

  4. Hoffmann-Jørgensen, J. (2006): Constructions of contents and measures satisfying a prescribed set of integral inequalities. Probab. Math. Stat. 26, pp. 283–313.

    Google Scholar 

  5. Horn, A.R and Johnson, C.R. (1990): Matrix analysis. Cambridge University Press, London and New York.

    Google Scholar 

  6. Joag-Dev, K., Perlman, M.D. and Pitt, L.D. (1983): Association of normal random variables and Slepian’s inequality. Ann. Probab. 11, pp. 451–455.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kahane, J.-P. (1986): Une inégalité du type Slepian et Gordon sur les processus gaussienns. Israel J. Math. 55, pp. 109–110.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kemperman, J.H.B. (1977): On the FKG-inequality for measures on a partially ordered space. Indag. Math. 39, pp. 313–331.

    MathSciNet  Google Scholar 

  9. Ledoux, M. and Talagrand, M. (1991): Probability in Banach spaces. Springer Verlag, Berlin and New York.

    Google Scholar 

  10. Müller, A. and Stoyan, D. (2002): Comparison methods for stochastic models and risks. John Wiley & Sons, Ltd., Chichester England.

    Google Scholar 

  11. Ostrowski, A. (1929): Mathematische Mizellen XIV über die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen. Jahreber. Deutsch. Math.-Verein. 38, pp. 54–62.

    MATH  Google Scholar 

  12. Pitt, L.D. (1982): Positively correlated normal variables are associated. Ann. Probab. 10, pp. 496–499.

    Article  MathSciNet  MATH  Google Scholar 

  13. Robertson, A.P. and Robertson, W. (1964): Topological vector spaces. Cambridge University Press, Cambridge.

    Google Scholar 

  14. Rudin, W. (1962): Fourier analysis on groups. Interscience Publishers (a division of John Wiley & Sons), New York and London.

    Google Scholar 

  15. Saks, S. (1937): Theory of the integral. Hafner Publishing Company, New York.

    Google Scholar 

  16. Samorodnitsky, G. and Taqqu, M.S. (1993): Stochastic monotonicity and Slepiantype inequalities for infinitely divisible and stable random vectors. Ann. Probab. 21, pp. 143–160.

    Article  MathSciNet  MATH  Google Scholar 

  17. Simons, G. (1977): An unexpected expectation. Ann.Probab. 5, pp. 157–158.

    Article  MathSciNet  MATH  Google Scholar 

  18. Slepian, D. (1962): The one-sided barrier problem for Gaussian noise. Bell Syst. Tech. J. 41, pp. 463–501.

    MathSciNet  Google Scholar 

  19. Tchen, A.H. (1980): Inequalities for distributions with given marginals. Ann. Probab. 8, pp. 814–827.

    Article  MathSciNet  MATH  Google Scholar 

  20. Wright, J.D.M. (1975): The continuity of mid-point convex functions. Bull. London Math. Soc. 7, pp. 89–92.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hoffmann-Jørgensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Hoffmann-Jørgensen, J. (2013). Slepian’s Inequality, Modularity and Integral Orderings. In: Houdré, C., Mason, D., Rosiński, J., Wellner, J. (eds) High Dimensional Probability VI. Progress in Probability, vol 66. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0490-5_2

Download citation

Publish with us

Policies and ethics