Skip to main content

Edge Fluctuations of Eigenvalues of Wigner Matrices

  • Conference paper
  • First Online:

Part of the book series: Progress in Probability ((PRPR,volume 66))

Abstract

We establish a moderate deviation principle (MDP) for the number of eigenvalues of a Wigner matrix in an interval close to the edge of the spectrum. Moreover we prove a MDP for the jth largest eigenvalue close to the edge. The proof relies on fine asymptotics of the variance of the eigenvalue counting function of GUE matrices due to Gustavsson. The extension to large families of Wigner matrices is based on the Tao and Vu Four Moment Theorem. Possible extensions to other random matrix ensembles are commented.

Mathematics Subject Classification (2010). Primary 60B20; Secondary 60F10, 15A18.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Cambridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, 2010.

    Google Scholar 

  2. G. Ben Arous and A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy, Probab. Theory Related Fields 108 (1997), no. 4, 517–542.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Chatterjee, A generalization of the Lindeberg principle, Ann. Probab. 34 (2006), no. 6, 2061–2076.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Dallaporta, A note on the central limit theorem for the eigenvalue counting function of Wigner matrices and covariance matrices, preprint, (2011).

    Google Scholar 

  5. S. Dallaporta and V. Vu, A note on the central limit theorem for the eigenvalue counting function of Wigner matrices, Electron. Commun. Probab. 16 (2011), 314– 322.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, and X. Zhou, Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), no. 12, 1491–1552.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Dembo, A. Guionnet, and O. Zeitouni, Moderate deviations for the spectral measure of certain random matrices, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 6, 1013–1042.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer, New York, 1998.

    Google Scholar 

  9. H. Döring and P. Eichelsbacher, Moderate deviations in a random graph and for the spectrum of Bernoulli random matrices, Electronic Journal of Probability 14 (2009), 2636–2656.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Döring, Moderate deviations for the determinant of Wigner matrices, to appear in Limit Theorems in Probability, Statistics and Number Theory, Springer Proceedings in Mathematics & Statistics (2013), dedicated to Friedrich Götze on the occasion of his sixtieth birthday.

    Google Scholar 

  11. H. Döring, Moderate deviations for the eigenvalue counting function of Wigner matrices, arXiv:1104.0221, to appear in Lat. Am. J. Probab. Math. Stat. (2013).

    Google Scholar 

  12. L. Erdös, H.-T. Yau, and J. Yin, Rigidity of eigenvalues of generalized Wigner matrices, Advances in Mathematics 229 (2012), no. 3, 1435–1515.

    Article  MathSciNet  MATH  Google Scholar 

  13. P.J. Forrester and E.M. Rains, Interrelationships between orthogonal, unitary and symplectic matrix ensembles, Random matrix models and their applications, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, Cambridge, 2001, pp. 171–207.

    Google Scholar 

  14. J. Gustavsson, Gaussian fluctuations of eigenvalues in the GUE, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 2, 151–178.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung, Math. Z. 15 (1922), no. 1, 211–225.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. O’Rourke, Gaussian fluctuations of eigenvalues in Wigner random matrices, J. Stat. Phys. 138 (2010), no. 6, 1045–1066.

    Article  MathSciNet  MATH  Google Scholar 

  17. A.B. Soshnikov, Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields, J. Statist. Phys. 100 (2000), no. 3–4, 491–522.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Tao and V. Vu, Random matrices: universality of local eigenvalue statistics up to the edge, Comm. Math. Phys. 298 (2010), no. 2, 549–572.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Tao, Random matrices: universality of local eigenvalue statistics, ActaMath. 206 (2011), 127–204.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Tao, Random matrices: The universality phenomenon for Wigner ensembles, preprint, arXiv:1202.0068 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Döring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Döring, H., Eichelsbacher, P. (2013). Edge Fluctuations of Eigenvalues of Wigner Matrices. In: Houdré, C., Mason, D., Rosiński, J., Wellner, J. (eds) High Dimensional Probability VI. Progress in Probability, vol 66. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0490-5_17

Download citation

Publish with us

Policies and ethics