Skip to main content

Bracketing Entropy of High Dimensional Distributions

  • Conference paper
  • First Online:
High Dimensional Probability VI

Part of the book series: Progress in Probability ((PRPR,volume 66))

Abstract

Let \(\mathcal{F}_{d}\) be the class of probability distribution functions on \([0,\,1]^{d},\,{d}\geq{2}\). The following estimate for the bracketing entropy of \(\mathcal{F}_{d}\) in the \([L]^{p}\) norm, \(1\,\leq\,p\,{<} \infty \), is obtained:

$${\rm log}{N_{[\,]}}(\varepsilon, \mathcal{F}_{d},{\parallel.\parallel}_p)=O(\varepsilon^{-1}{|\rm log\varepsilon|^{2(\rm d-1)}}).$$

Based on this estimate, a general relation between bracketing entropy in the L p norm and metric entropy in the L 1 norm for multivariate smooth functions is established.

Mathematics Subject Classification (2010). Primary 41A25; Secondary 62G05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, JĂłzsef and Chen, William W.L. Irregularities of distribution. Cambridge Tracts in Mathematics, 89. Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  2. Bilyk, Dmitriy and Lacey, Michael T. and Vagharshakyan, Armen. On the small ball inequality in all dimensions. J. Funct. Anal. 254 (2008), no. 9, 2470–2502.

    Google Scholar 

  3. Blei, Ron; Gao, Fuchang and Li, Wenbo V. Metric entropy of high dimensional distributions. Proc. Amer. Math. Soc. 135 (2007), no. 12, 4009–4018.

    Google Scholar 

  4. Dunker, T. and Linde, W. and Kühn, T. and Lifshits, M.A. Metric entropy of integration operators and small ball probabilities for the Brownian sheet. J. Approx. Theory 101 (1999), no. 1, 63–77.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gao, Fuchang. Entropy estimate for κ-monotone functions via small ball probability of integrated Brownian motion. Electron. Commun. Probab. 13 (2008), 121–130.

    Google Scholar 

  6. Gao, Fuchang; Li, Wenbo V. and Wellner, Jon A. How many Laplace transforms of probability measures are there? Proc. Amer. Math. Soc. 138 (2010), no. 12, 4331– 4344.

    Google Scholar 

  7. Gao, Fuchang and Wellner, Jon A. Entropy estimate for high dimensional monotonic functions. J. Multivariate Anal. 98 (2007), no. 9, 1751–1764.

    Google Scholar 

  8. Gao, Fuchang and Wellner, Jon A. On the rate of convergence of the maximum likelihood estimator of a κ-monotone density. Sci. China Ser. A 52 (2009), no. 7, 1525–1538.

    Google Scholar 

  9. Gao, Fuchang and Wellner, Jon A. Global rates of convergence of the MLE for multivariate interval censoring. Technical Report, Department of Statistics, University of Washington (2012).

    Google Scholar 

  10. van de Geer, S. The entropy bound for monotone functions. Technical Report 9110, University of Leiden (1991).

    Google Scholar 

  11. Kuelbs, James and Li, Wenbo V. Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 (1993), no. 1, 133–157.

    Google Scholar 

  12. Nickl, Richard and Pötscher, Benedikt M. Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov- and Sobolev-type. J. Theoret. Probab. 20 (2007), no. 2, 177–199.

    Google Scholar 

  13. van der Vaart, Aad W. Bracketing smooth functions. Stochastic Process. Appl. 52 (1994), no. 1, 93–105.

    Google Scholar 

  14. van der Vaart, Aad W. and Wellner, Jon A. Weak convergence and empirical processes. With applications to statistics. Springer Series in Statistics. Springer-Verlag, New York, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Gao, F. (2013). Bracketing Entropy of High Dimensional Distributions. In: Houdré, C., Mason, D., Rosiński, J., Wellner, J. (eds) High Dimensional Probability VI. Progress in Probability, vol 66. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0490-5_1

Download citation

Publish with us

Policies and ethics