Skip to main content

Space–Adiabatic Theory for Random–Landau Hamiltonian: Results and Prospects

  • Conference paper
  • First Online:
Microlocal Methods in Mathematical Physics and Global Analysis

Part of the book series: Trends in Mathematics ((RESPERSP))

  • 1015 Accesses

Abstract

The study of the (integer) Quantum Hall Effect (QHE) requires a careful analysis of the spectral properties of the 2D, single-electron Hamiltonian

$$ {H}_{\Gamma ,B} :={ \left (-\mathrm{i}{\partial }_{x} - B\ y\right )}^{2} +{ \left (-\mathrm{i}{\partial }_{y} + B\ x\right )}^{2} + {V }_{\Gamma }(x,y)$$
(1)

where \({H}_{B} := {H}_{\Gamma ,B} - {V }_{\Gamma }\) is the usual Landau Hamiltonian (in symmetric gauge) with magnetic field B and \({V }_{\Gamma }\) is a \(\Gamma \equiv {\mathbb{Z}}^{2}\) periodic potential which models the electronic interaction with a crystalline structure. Under usual conditions (e.g., \({V }_{\Gamma } \in {L}_{\mathrm{loc}}^{2}({\mathbb{R}}^{2})\)) the Hamiltonian 1 is self-adjoint on a suitable domain of \({L}^{2}({\mathbb{R}}^{2})\). A direct analysis of the fine spectral properties of 1 is extremely difficult and one needs resorting to simpler effective models hoping to capture (some of) the main physical features in suitable physical regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This assumption can be relaxed by introducing the notion of adiabatically decoupled energy subspace, cf. [8] or [3].

References

  1. J. V. Bellissard. C*-algebras in solid state physics: 2D electrons in uniform magnetic field. In: Operator Algebras and Applications Vol. 2: Mathematical Physics and Subfactors, E. Evans et al. editors, London Mathematical Society Lecture Note Series vol. 136, Cambridge University Press, 49–76 (1989).

    Google Scholar 

  2. J. V. Bellissard, H. Schulz-Baldes, A. van Elst. The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5471 (1994).

    Google Scholar 

  3. G. De Nittis, M. Lein. Applications of Magnetic \(\Psi \)-DO Techniques to Space-adiabatic Perturbation Theory. Rev. Math. Phys. 23 (3), 233–260 (2011).

    Google Scholar 

  4. G. De Nittis, G. Panati. Effective models for conductance in magnetic fields: derivation of Harper and Hofstadter models. arXiv:1007.4786v1 [math-ph].

    Google Scholar 

  5. A. Eckstein. Unitary reduction for the two-dimensional Schrödinger operator with strong magnetic field. Mathematische Nachrichten 282, (2009).

    Google Scholar 

  6. B. Helffer, J. Sjöstrand. Équation de Schrödinger avec champ magnétique et équation de Harper. In Schrödinger Operators (Proceedings of the Nordic Summer School in Mathematics, Sandbjerg Slot, Denmark, 1988), Lecture Notes in Physics, vol. 345, Springer, 118–197 (1989).

    Google Scholar 

  7. M. Măntoiu, R. Purice. The Magnetic Weyl Calculus J. Math. Phys. 45(4), 233–260 (2004).

    Google Scholar 

  8. G. Panati, H. Spohn, S. Teufel. Effective dynamics for Bloch electrons: Peierls substitution and beyond. Comm. Math. Phys. 242, 547–578 (2003).

    Google Scholar 

  9. M. Wilkinson, An exact effective hamiltonian for a perturbed Landau level, J. Phys. A 20, 1761–1771 (1987).

    Google Scholar 

Download references

Acknowledgements

The author would like to thank F. Klopp for many stimulating discussions. Project supported by the grant ANR-08-BLAN-0261-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe De Nittis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

De Nittis, G. (2013). Space–Adiabatic Theory for Random–Landau Hamiltonian: Results and Prospects. In: Grieser, D., Teufel, S., Vasy, A. (eds) Microlocal Methods in Mathematical Physics and Global Analysis. Trends in Mathematics(). Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0466-0_3

Download citation

Publish with us

Policies and ethics