Skip to main content

Wave Equations on Non-smooth Space-times

  • Chapter
  • First Online:
Evolution Equations of Hyperbolic and Schrödinger Type

Part of the book series: Progress in Mathematics ((PM,volume 301))

Abstract

We consider wave equations on Lorentzian manifolds in case of low regularity. We first extend the classical solution theory to prove global unique solvability of the Cauchy problem for distributional data and righthand side on smooth globally hyperbolic space-times. Then we turn to the case where the metric is non-smooth and present a local as well as a global existence and uniqueness result for a large class of Lorentzian manifolds with a weakly singular, locally bounded metric in Colombeau’s algebra of generalized functions.

Mathematics Subject Classification. Primary: 58J45; Secondary: 35L05, 35L15, 35D99, 46F30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bär, N. Ginoux, and F. Pfäffle. Wave equations on Lorentzian manifolds and quantization. ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich, 2007.

    Google Scholar 

  2. J.K. Beem, P.E. Ehrlich, and K.L. Easley. Global Lorentzian geometry. Marcel Dekker Inc., New York, 1996.

    Google Scholar 

  3. A.N. Bernal and M. Sánchez. Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys., 257(1):43–50, 2005.

    Google Scholar 

  4. A.N. Bernal and M. Sánchez. Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’. Classical Quantum Gravity, 24(3):745–749, 2007.

    Google Scholar 

  5. Y. Choquet-Bruhat. General relativity and the Einstein equations. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2009.

    Google Scholar 

  6. Y. Choquet-Bruhat and S. Cotsakis. Global hyperbolicity and completeness. J. Geom. Phys., 43(4):345–350, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  7. C.J.S. Clarke. Singularities: boundaries or internal points? In P.S. Joshi and A.K. Raychaudhuri, editors, Singularities, Black Holes and Cosmic Censorship, pages 24–32. IUCCA, Bombay, 1996.

    Google Scholar 

  8. C.J.S. Clarke. Generalized hyperbolicity in singular spacetimes. Classical Quantum Gravity, 15(4):975–984, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.F. Colombeau. New generalized functions and multiplication of distributions. North-Holland, Amsterdam, 1984.

    Google Scholar 

  10. J.F. Colombeau. Elementary introduction to new generalized functions. North-Holland, 1985.

    Google Scholar 

  11. J.W. de Roever and M. Damsma. Colombeau algebras on a C -manifold. Indag. Math. (N.S.), 2(3):341–358, 1991.

    Google Scholar 

  12. J. Dieudonné. Treatise on analysis. Vol. VIII, volume 10 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1993.

    Google Scholar 

  13. F.G. Friedlander. The wave equation on a curved space-time. Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1975.

    Google Scholar 

  14. C. Garetto. Topological structures in Colombeau algebras: topological ˜-modules and duality theory. Acta Appl. Math., 88(1):81–123, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Geroch and J. Traschen. Strings and other distributional sources in general relativity. Phys. Rev. D (3), 36(4):1017–1031, 1987.

    Google Scholar 

  16. J. Grant, E. Mayerhofer, and R. Steinbauer. The wave equation on singular spacetimes. Commun. Math. Phys., 285(2):399–420, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.B. Griffiths and J. Podolsk´y. Exact space-times in Einstein’s general relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  18. M. Grosser, M. Kunzinger, M. Oberguggenberger, and R. Steinbauer. Geometric theory of generalized functions. Kluwer, Dordrecht, 2001.

    Google Scholar 

  19. C. Hanel. Wave-type equations of low regularity. Appl. Anal., to appear, 2011.

    Google Scholar 

  20. S.W. Hawking and G.F.R. Ellis. The large scale structure of space-time. Cambridge Monographs of Mathematical Physics. Vol. I. London: Cambridge University Press. XI, 391 p., 1973.

    Google Scholar 

  21. L. Hörmander. The analysis of linear partial differential operators, volume III. Springer-Verlag, 1985. Second printing 1994.

    Google Scholar 

  22. L. Hörmander. The analysis of linear partial differential operators, volume I. Springer-Verlag, second edition, 1990.

    Google Scholar 

  23. A. Burtscher, M. Kunzinger, Algebras of generalized functions with smooth parameter dependence. Proc. Edinburgh Math. Soc., to appear.

    Google Scholar 

  24. M. Kunzinger and R. Steinbauer. Foundations of a nonlinear distributional geometry. Acta Appl. Math., 71:179–206, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Kunzinger and R. Steinbauer. Generalized pseudo-Riemannian geometry. Trans. Amer. Math. Soc., 354(10):4179–4199, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  26. Philippe G. Le Floch and Cristinel Mardare. Definition and stability of Lorentzian manifolds with distributional curvature. Port. Math. (N.S.), 64(4):535–573, 2007.

    Google Scholar 

  27. E. Mayerhofer. The wave equation on static singular space-times. PhD thesis, University of Vienna, 2006. http://arxiv.org/abs/0802.1616.

  28. B. O’Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press, New York, 1983.

    Google Scholar 

  29. R. Penrose and W. Rindler. Spinors and space-time. Vol. 1. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1987. Two-spinor calculus and relativistic fields.

    Google Scholar 

  30. L. Schwartz. Sur l’impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris, 239:847–848, 1954.

    MathSciNet  MATH  Google Scholar 

  31. R. Steinbauer and J.A. Vickers. The use of generalized functions and distributions in general relativity. Classical Quantum Gravity, 23(10):R91–R114, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Steinbauer and J.A. Vickers. On the Geroch-Traschen class of metrics. Classical Quantum Gravity, 26(6):065001, 19, 2009.

    Google Scholar 

  33. J.A. Vickers and J.P. Wilson. Generalized hyperbolicity in conical spacetimes. Class. Quantum. Grav., 17:1333–1360, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Waldmann. Geometric wave equations. Lecture Notes, University of Freiburg. http://omnibus.uni-freiburg.de/∼sw12/Lectures/Wellen0809/main.pdf, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Hörmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Hörmann, G., Kunzinger, M., Steinbauer, R. (2012). Wave Equations on Non-smooth Space-times. In: Ruzhansky, M., Sugimoto, M., Wirth, J. (eds) Evolution Equations of Hyperbolic and Schrödinger Type. Progress in Mathematics, vol 301. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0454-7_9

Download citation

Publish with us

Policies and ethics