Skip to main content

Geometric Regularization on Riemannian and Lorentzian Manifolds

  • Chapter
  • First Online:
Evolution Equations of Hyperbolic and Schrödinger Type

Part of the book series: Progress in Mathematics ((PM,volume 301))

  • 1134 Accesses

Abstract

We investigate regularizations of distributional sections of vector bundles by means of nets of smooth sections that preserve the main regularity properties of the original distributions (singular support, wavefront set, Sobolev regularity). The underlying regularization mechanism is based on functional calculus of elliptic operators with finite speed of propagation with respect to a complete Riemannian metric. As an application we consider the interplay between the wave equation on a Lorentzian manifold and corresponding Riemannian regularizations, and under additional regularity assumptions we derive bounds on the rate of convergence of their commutator. We also show that the restriction to underlying space-like foliations behaves well with respect to these regularizations.

Mathematics Subject Classification. Primary 58J37; Secondary 46F30, 46T30, 35A27, 53C50.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ch. Bär, N. Ginoux, and F. Pfäffle. Wave equations on Lorentzian manifolds and quantization. ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich, 2007.

    Google Scholar 

  2. A.N. Bernal and M. Sánchez. Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys., 257(1):43–50, 2005.

    Article  MATH  Google Scholar 

  3. A.N. Bernal and M. Sánchez. Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’. Classical Quantum Gravity, 24(3):745–749, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Chazarain, A. Piriou. Introduction to the theory of linear partial differential equations. Studies in Mathematics and Its Applications, Vol. 14. North-Holland, 1982.

    Google Scholar 

  5. Y. Choquet-Bruhat. General relativity and the Einstein equations. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2009.

    Google Scholar 

  6. C.J.S. Clarke. The Analysis of Space-Time Singularities, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  7. C.J.S. Clarke. Singularities: boundaries or internal points?, in Singularities, Black Holes and Cosmic Censorship, Joshi, P.S. and Raychaudhuri, A.K., eds., IUCCA, Bombay, 1996, pp. 24–32.

    Google Scholar 

  8. C.J.S. Clarke. Generalized hyperbolicity in singular spacetimes. Class. Quantum, Grav. 15 (1998), pp. 975–984.

    Google Scholar 

  9. J.F. Colombeau. New generalized functions and multiplication of distributions. North-Holland, Amsterdam, 1984.

    MATH  Google Scholar 

  10. J.F. Colombeau. Elementary introduction to new generalized functions. North-Holland, Amsterdam, 1985.

    MATH  Google Scholar 

  11. S. Dave. Geometrical embeddings of distributions into algebras of generalized functions, Math. Nachr., 283 (2010), no. 11, 1575–1588.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.W. de Roever, M. Damsma. Colombeau algebras on a C -manifold. Indag. Math. (N.S.) 2 (1991), no. 3, 341–358.

    Google Scholar 

  13. S. Dave, G. Hörmann, and M. Kunzinger. Optimal regularization processes on complete Riemannian manifolds. 2010. arXiv:1003.3341 [math.FA].

    Google Scholar 

  14. N. Dapić, S. Pilipović, D. Scarpalezos. Microlocal analysis of Colombeau’s generalized functions: propagation of singularities. J. Anal. Math. 75 (1998), 51–66.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Dieudonné. Treatise on analysis. Vol. VIII, volume 10 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1993.

    Google Scholar 

  16. Garetto, C. Topological structures in Colombeau algebras: Topological ℂ˜-modules and duality theory. Acta Appl. Math. 88, No. 1, 81–123 (2005).

    Google Scholar 

  17. C. Garetto, G. Hörmann. Microlocal analysis of generalized functions: pseudodifferential techniques and propagation of singularities. Proc. Edinb. Math. Soc. (2) 48 (2005), no. 3, 603–629.

    Google Scholar 

  18. R. Geroch. Domain of dependence. Jour. Math. Phys., 11:437–449, 1970.

    MathSciNet  MATH  Google Scholar 

  19. J.D.E. Grant, E. Mayerhofer, R. Steinbauer. The wave equation on singular spacetimes. Comm. Math. Phys. 285 (2009), no. 2, 399–420.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer. Geometric theory of generalized functions, Kluwer, Dordrecht, 2001.

    Google Scholar 

  21. S. Haller. Microlocal analysis of generalized pullbacks of Colombeau functions. Acta Appl. Math. 105, no. 1, 83–109 (2009).

    Google Scholar 

  22. S.W. Hawking, G.F.R. Ellis. The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. Cambridge University Press, 1973.

    Google Scholar 

  23. Higson N, Roe J (2000) Analytic 𝐾-homology. Oxford Mathematical Monographs, Oxford

    Google Scholar 

  24. G. H¨ormann. Integration and microlocal analysis in Colombeau algebras of generalized functions. J. Math. Anal. Appl. 239 (1999), no. 2, 332–348.

    Google Scholar 

  25. G. H¨ormann, M. Kunzinger, R. Steinbauer. Wave equations on non-smooth spacetimes, this volume, pp. 163–186.

    Google Scholar 

  26. A.A. Kosinski. Differential manifolds. Pure and Applied Mathematics 138, Academic Press (1993).

    Google Scholar 

  27. Kunzinger M, Steinbauer R (2002) Generalized pseudo-Riemannian geometry. Trans Amer Math Soc 354(10):4179–4199

    Article  MathSciNet  MATH  Google Scholar 

  28. Leray J (1953) Hyperbolic Differential Equations. Lecture Notes, IAS, Princeton

    Google Scholar 

  29. E. Minguzzi and M. S´anchez. The causal hierarchy of spacetimes. In Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., pages 299–358. Eur. Math. Soc., Z¨urich, 2008.

    Google Scholar 

  30. Nomizu K, Ozeki H (1961) The existence of complete Riemannian metrics. Proc Am Math Soc 12:889–891

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Oberguggenberger. Multiplication of distributions and applications to partial differential equations. Pitman Research Notes in Mathematics 59. Longman, New York, 1992.

    Google Scholar 

  32. O’Neill B (1983) Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press, New York

    Google Scholar 

  33. Steinbauer R, Vickers J (2006) The use of generalized functions and distributions in general relativity. Class Quantum Grav 23:R91–R114

    Article  MathSciNet  MATH  Google Scholar 

  34. Vickers JA, Wilson JP (2000) Generalized hyperbolicity in conical spacetimes. Class Quantum Grav 17:1333–1260

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Dave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Dave, S., Hörmann, G., Kunzinger, M. (2012). Geometric Regularization on Riemannian and Lorentzian Manifolds. In: Ruzhansky, M., Sugimoto, M., Wirth, J. (eds) Evolution Equations of Hyperbolic and Schrödinger Type. Progress in Mathematics, vol 301. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0454-7_5

Download citation

Publish with us

Policies and ethics