Skip to main content

Local Lyapunov Functions for Periodic and Finite-Time ODEs

  • Conference paper
  • First Online:
Recent Trends in Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 35))

Abstract

Lyapunov functions for general systems are difficult to construct. However, for autonomous linear systems with exponentially stable equilibrium, there is a classical way to construct a global Lyapunov function by solving a matrix equation. Consequently, the same function is a local Lyapunov function for a nonlinear system.In this paper, we generalise these results to time-periodic and, in particular, finite-time systems with an exponentially attractive zero solution. We show the existence of local Lyapunov functions for nonlinear systems. For finite-time systems, we consider a generalised notion of a Lyapunov function, which is not necessarily continuously differentiable, but just locally Lipschitz continuous; the derivative is then replaced by the Dini derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baier, R., Grüne, L., Hafstein, S.: Linear programming based Lyapunov function computation for differential inclusions. Discrete Contin. Dyn. Syst. Ser. B 17, 33–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, A., Doan, T.S., Siegmund, S.: Nonautonomous finite-time dynamics. Discrete Contin. Dyn. Syst. Ser. B 9, 463–492 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chicone, C.: Ordinary Differential Equations with Applications. Springer, New York (1999)

    MATH  Google Scholar 

  4. Culver, W.J.: On the existence and uniqueness of the real logarithm of a matrix. Proc. Am Math. Soc. 17, 1146–1151 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Doan, T.S., Karrasch, D., Ngyuen, T.Y., Siegmund, S.: A unified approach to finite-time hyperbolicity which extends finite-time Lyapunov exponents. J. Differ. Equ. 252, 5535–5554 (2012)

    Article  MATH  Google Scholar 

  6. Doan, T.S., Palmer, K., Siegmund, S.: Transient spectral theory, stable and unstable cones and Gershgorin’s theorem for finite-time differential equations. J. Differ. Equ. 250, 4177–4199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Giesl, P.: Construction of Global Lyapunov Functions Using Radial Basis Functions. Lecture Notes in Mathematics, vol. 1904. Springer, Berlin (2007)

    Google Scholar 

  8. Giesl, P.: Construction of a local and global Lyapunov function using radial basis functions. IMA J. Appl. Math. 73, 782–802 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giesl, P.: Construction of a finite-time Lyapunov function by Meshless Collocation. Discrete Contin. Dyn. Syst. Ser. B 17, 2387–2412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giesl, P., Hafstein, S.: Existence of piecewise affine Lyapunov functions in two dimensions. J. Math. Anal. Appl. 371, 233–248 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giesl, P., Hafstein, S.: Construction of Lyapunov functions for nonlinear planar systems by linear programming. J. Math. Anal. Appl. 388, 463–479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giesl, P., Hafstein, S.: Existence of piecewise linear Lyapunov functions in arbitrary dimensions. Discrete Contin. Dyn. Syst. 32, 3539–3565 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giesl, P., Hafstein, S.: Revised CPA method to compute Lyapunov functions for nonlinear systems (2013, submitted)

    Google Scholar 

  14. Giesl, P., Rasmussen, M.: Areas of attraction for nonautonomous differential equations on finite time intervals. J. Math. Anal. Appl. 390, 27–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grüne, L., Kloeden, P.E., Siegmund, S., Wirth, F.: Lyapunov’s second method for nonautonomous differential equations. Discrete Contin. Dyn. Syst. 18, 375–403 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hafstein, S.: A constructive converse Lyapunov theorem on exponential stability. Discrete Contin. Dyn. Syst. 10, 657–678 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hafstein, S.: An algorithm for constructing Lyapunov functions. Electron. J. Differ. Equ. Monogr. 8, 100 (2007)

    MathSciNet  Google Scholar 

  18. Haller, G.: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10, 99–108 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haller, G., Sapsis, T.: Lagrangian coherent structures and the smallest finite-time Lyapunov exponent. Chaos 21, 1–5 (2011)

    Article  MathSciNet  Google Scholar 

  20. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulance. Physica D 147, 352–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khalil, H.K.: Nonlinear Systems, 3rd edn. Macmillan, New York (2000)

    Google Scholar 

  22. Lyapunov, A.M.: The General Problem of the Stability of Motion. Translated by A. T. Fuller, Taylor & Francis (1992)

    MATH  Google Scholar 

  23. Papachristodoulou, A., Prajna, S.: The construction of Lyapunov functions using the sum of squares decomposition. In: 41th IEEE Conference on Decision and Control, pp. 3482–3487 (2002)

    Google Scholar 

  24. Peet, M.: Exponentially stable nonlinear systems have polynomial Lyapunov functions on bounded regions. IEEE Trans. Autom. Control 54, 979–987 (2009)

    Article  MathSciNet  Google Scholar 

  25. Peet, M., Papachristodoulou, A.: A converse sum-of-squares Lyapunov result: an existence proof based on the Picard iteration. In: 49th IEEE Conference on Decision and Control, pp. 5949–5954 (2010)

    Google Scholar 

  26. Rasmussen, M.: Finite-time attractivity and bifurcation for nonautonomous differential equations. Differ. Equ. Dyn. Syst. 18, 57–78 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Giesl .

Editor information

Editors and Affiliations

Additional information

Dedicated to Jürgen Scheurle on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Giesl, P., Hafstein, S. (2013). Local Lyapunov Functions for Periodic and Finite-Time ODEs. In: Johann, A., Kruse, HP., Rupp, F., Schmitz, S. (eds) Recent Trends in Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 35. Springer, Basel. https://doi.org/10.1007/978-3-0348-0451-6_7

Download citation

Publish with us

Policies and ethics