Skip to main content

Deformation of Geometry and Bifurcations of Vortex Rings

  • Conference paper
  • First Online:
Recent Trends in Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 35))

Abstract

We construct a smooth family of Hamiltonian systems, together with a family of group symmetries and momentum maps, for the dynamics of point vortices on surfaces parametrized by the curvature of the surface. Equivariant bifurcations in this family are characterized, whence the stability of the Thomson heptagon is deduced without recourse to the Birkhoff normal form, which has hitherto been a necessary tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually formulaic convenience leads us to take 4λ to be the Gaussian curvature.

  2. 2.

    Despite three formulae, a is a single analytic function of r, λ, with series expansion \(a = r -\frac{1} {3}{r}^{3}\lambda + \frac{1} {5}{r{}^{5}\lambda }^{2} -\frac{1} {7}{r{}^{7}\lambda }^{3} + \cdots \) convergent for | r 2 λ |  < 1.

  3. 3.

    The minus sign makes − Δ a positive operator. But we shall be casual about the sign and use + Δ as well as − Δ. All that the casualness causes is to reverse the direction of the flow.

  4. 4.

    S n is the group of permutations of the n vortices and D n has order 2n.

  5. 5.

    The vector field, not the Hessian.

  6. 6.

    Cf. ( 14.25 ).

  7. 7.

    We put \(\mathbf{D}_{1} = \mathbb{Z}_{2}\) acting by reflection.

  8. 8.

    “Nonagon” mixes Latin and Greek.

  9. 9.

    “Undecagon” is another Greco-Latin hybrid.

References

  1. Boatto, S.: Curvature perturbations and stability of a ring of vortices. Discrete Contin. Dyn. Syst. 10, 349–375 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boatto, S., Cabral, H.: Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere. SIAM J. Appl. Math. 64, 216–230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bridges, T.J., Furter, J.E.: Singularity Theory and Equivariant Symplectic Maps. Lecture Notes in Mathematics, vol. 1558. Springer, Berlin (1993)

    Google Scholar 

  4. Buono, P.L., Laurent-Polz, F., Montaldi, J.: Symmetric Hamiltonian bifurcations. In: Montaldi, J., Ratiu, T.S. (eds.) Geometric Mechanics and Symmetry: The Peyresq Lectures. LMS Lecture Notes Series, vol. 306, pp. 357–402. Cambridge UP, Cambridge (2005)

    Chapter  Google Scholar 

  5. Denkowska, Z., Łojasiewicz, S., Stasica, J.: Certaines propriétés élémentaires des ensembles sous-analytiques. Bull. Acad. Polonaise Sci. Sér. Sci. Math. 27, 529–535 (1979)

    MATH  Google Scholar 

  6. Golubitsky, M., Stewart, I.: Generic bifurcation of Hamiltonian systems with symmetry. Physica D 24, 391–405 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  8. Hansen, E.: A Table of Series and Products. Prentice-Hall, Englewood Cliffs (1975)

    MATH  Google Scholar 

  9. Hironaka, H.: Introduction to Real Analytic Sets and Real-Analytic Maps. Instituto ‘L. Tonelli’, Pisa (1973)

    Google Scholar 

  10. Kimura, Y.: Vortex motion on surfaces with constant curvature. Proc. R. Soc. Lond. A 455, 245–259 (1999)

    Article  MATH  Google Scholar 

  11. Kurakin, L.G., Yudovich, V.I.: The stability of stationary rotation of a regular vortex polygon. Chaos 12, 574–595 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Laurent-Polz, F.: Point vortices on the sphere: a case with opposite vorticities. Nonlinearity 15, 143–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laurent-Polz, F., Montaldi, J., Roberts, R.M.: Point vortices on the sphere: stability of symmetric relative equilibria. J. Geom. Mech. 3, 439–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lim, C., Montaldi, J., Roberts, R.M.: Relative equilibria of point vortices on the sphere. Physica D 148, 97–135 (2001)

    Article  MathSciNet  Google Scholar 

  15. Marsden, J., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  16. Mertz, G.: Stability of body-centered polygonal configurations of ideal vortices. Phys. Fluids 21, 1092–1095 (1978)

    Article  MATH  Google Scholar 

  17. Montaldi, J.: Persistence and stability of relative equilibria. Nonlinearity 11, 449–466 (1997)

    Article  MathSciNet  Google Scholar 

  18. Polvani, L., Dritschel, D.: Wave and vortex dynamics on the surface of a sphere. J. Fluid Mech. 255, 35–64 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Poston, T., Stewart, I.: Catastrophe Theory and Applications. Dover, New York (1996) (Original edition Prentice Hall, 1978)

    Google Scholar 

  20. Schmidt, D.: The stability of the Thomson heptagon. Regul. Chaotic Dyn. 9, 519–528 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Souriau, J.-M.: Structure of Dynamical Systems: A Symplectic View of Physics. Progress in Mathematics, vol. 149. Birkhäuser, Boston (1997)

    Google Scholar 

  22. Thomson, J.J.: A Treatise on the Motion of Vortex Rings. An Essay to Which the Adams Prize Was Adjudged in 1882, in the University of Cambridge. Macmillan, London (1883)

    Google Scholar 

Download references

Acknowledgements

JM thanks Tudor Ratiu and the staff of the Bernoulli Centre in Lausanne for their hospitality, as much of this paper was written during an extended visit there. TT thanks L. Mahadevan and the staff of SEAS at Harvard for their hospitality, as much of this paper was finished during an extended visit there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Montaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Montaldi, J., Tokieda, T. (2013). Deformation of Geometry and Bifurcations of Vortex Rings. In: Johann, A., Kruse, HP., Rupp, F., Schmitz, S. (eds) Recent Trends in Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 35. Springer, Basel. https://doi.org/10.1007/978-3-0348-0451-6_14

Download citation

Publish with us

Policies and ethics