Skip to main content

A Guided Sequential Monte Carlo Method for the Assimilation of Data into Stochastic Dynamical Systems

  • Conference paper
  • First Online:
Recent Trends in Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 35))

Abstract

Assimilation of measurements into stochastic dynamical systems is challenging due to the generally non-Gaussian behavior of the underlying probability density functions. While sequential Monte Carlo methods have emerged as a methodology for tackling assimilation problems under rather general circumstances, those methods suffer from the curse of dimensionality. At the same time ensemble transform filters, such as the ensemble Kalman filter, have emerged as attractive alternatives to sequential Monte Carlo methods since they also work for high dimensional problems. Typical ensemble transform filters are however based on rather crude approximations to the involved probability density functions and are therefore of limited accuracy. For that reason there have been a number of recent attempts to combine sequential Monte Carlo methods with ensemble transform techniques, so-called guided sequential Monte Carlo (GSMC) methods. In this paper, we first put ensemble transform filters in the context of coupling and optimal transportation and secondly propose a new GSMC method based on combining approximate couplings with importance sampling. The effect of various filtering strategies is demonstrated for a simple Brownian dynamics model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, J.: A non-Gaussian ensemble filter update for data assimilation. Monthly Weather Rev. 138, 4186–4198 (2010)

    Article  Google Scholar 

  2. Bain, A., Crisan, D.: Fundamentals of stochastic filtering. In: Stochastic Modelling and Applied Probability, vol. 60. Springer, New York (2009)

    Google Scholar 

  3. Bengtsson, T., Bickel, P., Li, B.: Curse-of-dimensionality revisited: collapse of the particle filter in very large scale systems. In: Nolan, D., Speed, T. (eds.) Probability and Statistics: Essays in Honor of David A. Freedman, pp. 316–334. Institute of Mathematical Statistics, Beachwood (2008)

    Chapter  Google Scholar 

  4. Bocquet, M., Pires, C., Wu, L.: Beyond Gaussian statistical modeling in geophysical data assimilation. Monthly Weather Rev. 138, 2997–3022 (2010)

    Article  Google Scholar 

  5. Chorin, A., Morzfeld, M., Tu, X.: Implicit filters for data assimilation. Commun. Appl. Math. Comput. Sci. 5, 221–240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cotter, C., Reich, S.: Ensemble filter techniques for intermittent data assimilation—a survey. In: Engl, H.W. et al. (eds.) Radon Series on Computational and Applied Mathematics. De Gruyter, Boston (2013, in press)

    Google Scholar 

  7. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39B, 1–38 (1977)

    MathSciNet  Google Scholar 

  8. Doucet, A., de Freitas, N. (eds.) N.G.: Sequential Monte Carlo Methods in Practice. Springer, Berlin (2001)

    Google Scholar 

  9. Evensen, G.: Data Assimilation. The Ensemble Kalman Filter. Springer, New York (2006)

    Google Scholar 

  10. Gardiner, C.: Handbook on Stochastic Methods, 3rd edn. Springer, New York (2004)

    Book  Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  12. Jazwinski, A.: Stochastic Processes and Filtering Theory. Academic, New York (1970)

    MATH  Google Scholar 

  13. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  14. Künsch, H.: Recursive Monte Carlo filter: algorithms and theoretical analysis. Ann. Stat. 33, 1983–2021 (2005)

    Article  MATH  Google Scholar 

  15. Leeuwen, P.V.: Nonlinear data assimilation in the geosciences: an extremely efficient particle filter. Q. J. R. Meteorolog. Soc. 136, 1991–1996 (2010)

    Article  Google Scholar 

  16. Lei, J., Bickel, P.: A moment matching ensemble filter for nonlinear and non-Gaussian data assimilation. Monthly Weather Rev. 139, 3964–3973 (2011)

    Article  Google Scholar 

  17. del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, New York (2004)

    Book  Google Scholar 

  18. Morzfeld, M., Tu, X., Atkins, E., Chorin, A.: A random map implementation of implicit filters. J. Comput. Phys. 231, 2049–2066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moselhy, T.E., Marzouk, Y.: Bayesian inference with optimal maps. J. Comput. Phys. 231, 7815–7850 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)

    Article  MATH  Google Scholar 

  21. Olkin, I., Pukelsheim, F.: The distance between two random vectors with given dispersion matrices. Linear Algebra Appl. 48, 257–263 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reich, S.: A dynamical systems framework for intermittent data assimilation. BIT Numer. Math. 51, 235–249 (2011)

    Article  MATH  Google Scholar 

  23. Reich, S.: A Gaussian mixture ensemble transform filter. Q. J. R. Meterolog. Soc. 138, 222–233 (2012)

    Article  Google Scholar 

  24. Reich, S.: A non-parametric ensemble transform method for Bayesian inference. Tech. Rep., Potsdam University (2012). SIAM Journal Scientific Computing

    Google Scholar 

  25. Villani, C.: Optimal Transportation: Old and New. Springer, Berlin Heidelberg (2009)

    Book  Google Scholar 

  26. Wand, M., Jones, M.: Kernel Smoothing. Chapmann and Hall, London (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Reich .

Editor information

Editors and Affiliations

Additional information

Dedicated to Jürgen Scheurle on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Reich, S. (2013). A Guided Sequential Monte Carlo Method for the Assimilation of Data into Stochastic Dynamical Systems. In: Johann, A., Kruse, HP., Rupp, F., Schmitz, S. (eds) Recent Trends in Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 35. Springer, Basel. https://doi.org/10.1007/978-3-0348-0451-6_10

Download citation

Publish with us

Policies and ethics